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Structured Data-to-Text Generation
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Above the Veil is an Australian novel and the
sequel to Aenir and Castle . It was followed
by Into the Battle and The Violet Keystone .

Giant agreed last month to purchase
the carrier .

WebNLG [Gardent et al., 2017] SR11Deep [Belz et al., 2011]
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Sequential Encoder-Decoder Models
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Directly Encoding Input Structure ?
Sequential encoders, require a separate input linearisation step
After training they will learn a “structure” representation
However, input explicit structure is NOT directly exploited

Graph Convolutional Network (GCN) encoder

X Input encoding guided by the graph structure
X Explicit encoding long-distance dependencies given by the graph
X Requiere less amounts of data to learn them
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Directed-Labelled Graph Convolutional Networks
Message passing [Kipf and Welling, 2016]

Edge directions, labels and importance [Marcheggiani and Titov, 2017]
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Sinlge Layer GCN Encoder
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Stacked Layers and Skip-Connections
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GCN Encoder-Decoder with Attention
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[Luong et al., 2015]
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Reification on Knowledge Base (KB) Graphs
[Baader 2003]
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The representation of KB relations as entities enables Attention over them

Reduces the number of KB relations to be modelled as network parameters
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Experimental Setup

X Encoders Comparison
X Existing Systems Comparison

WebNLG [Gardent et al., 2017]

GCN (4 layers +residual encoder, 1 layer decoder, 256 dim)
LSTM (1 layer encoder, 1 layer decoder, 256 dim) + linearisation
GCN + pre-trained Embeddings and Copy (GCN++)

SR11Deep [Belz et al., 2011]

GCN (7 layers +dense encoder, 1 layer decoder, 500 dim )
LSTM (1 layer encoder, 1 layer decoder, 500 dim ) + linearisation
Encode morphological features present in the input (GCNmorph)

∗model selection done on the development set
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GCN performance on WebNLG
‡ Average BLEU-4 on 3 runs
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*PKUWRITER, MELBOURNE and ADAPT neural systems participating on the WebNLG challenge
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GCN performance on SR11Deep

Encoders Comparison Systems Comparison
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* STUMBA-D and TBDIL non-neural systems with pipeline of classifiers
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Example Outputs WebNLG

Input graph:
(William Anders dateOfRetirement 1969 - 09 - 01)
(William Anders was a crew member of Apollo 8)

(Apollo 8 commander Frank Borman)
(Apollo 8 backup pilot Buzz Aldrin)

(LSTM) William Anders was a crew member of the OPERATOR operated Apollo 8 and retired on
September 1st 1969 .

(GCN) William Anders was a crew member of OPERATOR ’ s Apollo 8 alongside backup pilot Buzz Aldrin
and backup pilot Buzz Aldrin .

(GCN++) william anders , who retired on the 1st of september 1969 , was a crew member on apollo 8 along
with commander frank borman and backup pilot buzz aldrin .
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Example Outputs SR11Deep

Reference:
The economy ’s temperature will be taken from several vantage points this week , with readings on trade ,
output , housing and inflation .

(LSTM) the economy ’s accords will be taken from several phases this week , housing and inflation
readings on trade , housing and inflation .

(GCN) the economy ’s temperatures will be taken from several vantage points this week , with reading on
trades output , housing and inflation .
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Concluding Remarks

GCN-based generation architecture that directly encodes explicit structure in the input

GCN -based models outperform a sequential baseline on automatic evaluation

• improve on over- and under- generation cases

Relational inductive bias of the GCN encoder produces more informative representations of
the input [Battaglia et al., 2018]

Future work

Other input graph representations

• Abstract Meaning Representations (AMR; [Banarescu et al., 2013])
• Scoped semantic representations [Van Noord et al., 2018]
• Scene graphs [Schuster, et al., 2015 ]

Multi-lingual training of GCN layers with universal dependencies [Mille, et al., 2017]
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Code (PyTorch) + Data: github.com/diegma/graph-2-text

Thank you!
Questions?
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github.com/diegma/graph-2-text


Separate Input Linearisation Step
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Automatic Evaluation

Encoder BLEU METEOR TER

LSTM .526±.010 .38±.00 .43±.01
GCN .535±.004 .39±.00 .44±.02

ADAPT .606 .44 .37
GCN++ .559±.017 .39±.01 0.41±.01
MELBOURNE .545 .41 .40
PKUWRITER .512 .37 .45

Table : Test results WebNLG task.

Encoder BLEU METEOR TER

LSTM .377±.007 .65±.00 .44±.01
GCN .647±.005 .77±.00 .24±.01
GCN+feat .666±.027 .76±.01 .25±.01

Table : Test results SR11Deep task.
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Ablation Study

BLEU SIZE
Model none res den none res den

LSTM .543±.003 - - 4.3 - -

GCN
1L .537±.006 - - 4.3 - -
2L .545±.016 .553±.005 .552±.013 4.5 4.5 4.7
3L .548±.012 .560±.013 .557±.001 4.7 4.7 5.2
4L .537±.005 .569±.003 .558±.005 4.9 4.9 6.0
5L .516±.022 .561±.016 .559±.003 5.1 5.1 7.0
6L .508±.022 .561±.007 .558±.018 5.3 5.3 8.2
7L .492±.024 .546±.023 .564±.012 5.5 5.5 9.6
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