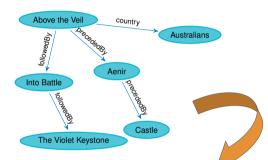
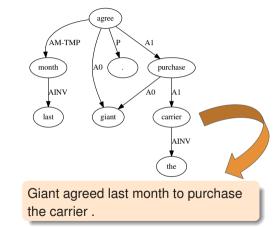
Deep Graph Convolutional Encoders for Structured Data to Text Generation

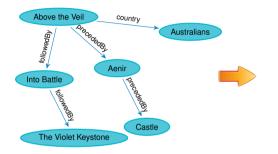
Diego Marcheggiani^{1,2} Laura Perez-Beltrachini¹


¹ILCC, University of Edinburgh ²ILLC, University of Amsterdam

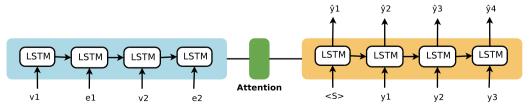
marcheggiani@uva.nl lperez@inf.ed.ac.uk



Structured Data-to-Text Generation


Above the Veil is an Australian novel and the sequel to Aenir and Castle . It was followed by Into the Battle and The Violet Keystone .

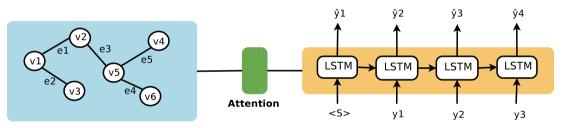
WebNLG [Gardent et al., 2017]



SR11Deep [Belz et al., 2011]

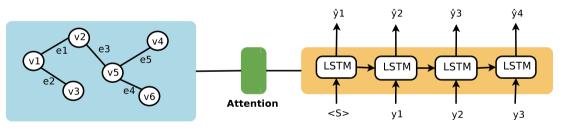
Sequential Encoder-Decoder Models

Above the Veil is an Australian novel and the sequel to Aenir and Castle . It was followed by Into the Battle and The Violet Keystone .



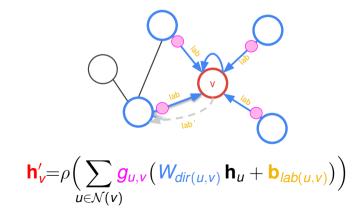
Directly Encoding Input Structure ?

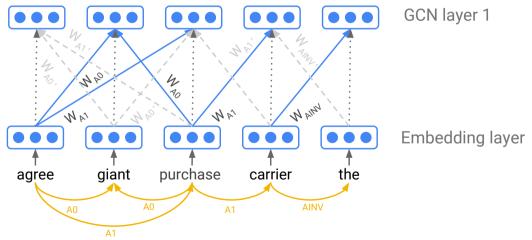
- Sequential encoders, require a separate input linearisation step
- After training they will learn a "structure" representation
- However, input explicit structure is NOT directly exploited


Directly Encoding Input Structure ?

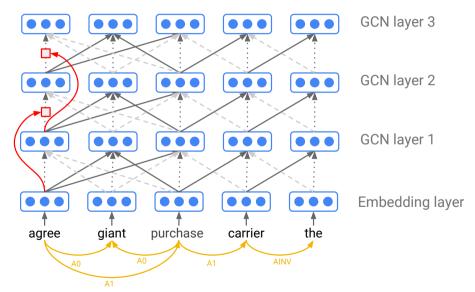
- Sequential encoders, require a separate input linearisation step
- After training they will learn a "structure" representation
- However, input explicit structure is NOT directly exploited
- Graph Convolutional Network (GCN) encoder

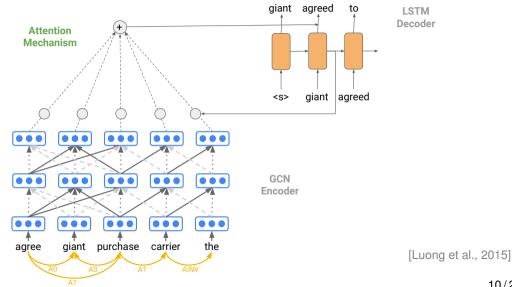
Directly Encoding Input Structure ?


- Sequential encoders, require a separate input linearisation step
- After training they will learn a "structure" representation
- However, input explicit structure is NOT directly exploited
- Graph Convolutional Network (GCN) encoder

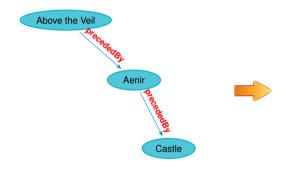

- \checkmark Input encoding guided by the graph structure
- ✓ Explicit encoding long-distance dependencies given by the graph
- ✓ Requiere less amounts of data to learn them

Directed-Labelled Graph Convolutional Networks

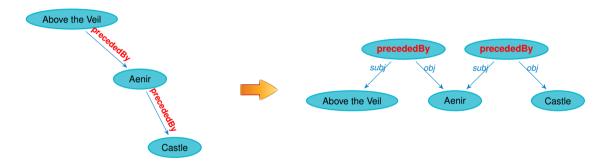

- Message passing [Kipf and Welling, 2016]
- Edge directions, labels and importance [Marcheggiani and Titov, 2017]


Sinlge Layer GCN Encoder

Stacked Layers and Skip-Connections


GCN Encoder-Decoder with Attention

10/20


Reification on Knowledge Base (KB) Graphs

[Baader 2003]

Reification on Knowledge Base (KB) Graphs

[Baader 2003]

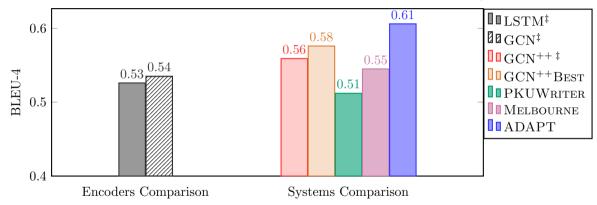
- The representation of KB relations as entities enables Attention over them
- Reduces the number of KB relations to be modelled as network parameters

Experimental Setup

- Encoders Comparison
 Existing Systems Comparison
- Existing Systems Compar

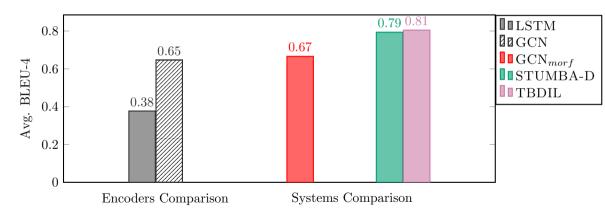
WebNLG [Gardent et al., 2017]

- GCN (4 layers +residual encoder, 1 layer decoder, 256 dim)
- LSTM (1 layer encoder, 1 layer decoder, 256 dim) + linearisation
- GCN + pre-trained Embeddings and Copy (GCN⁺⁺)


SR11Deep [Belz et al., 2011]

- GCN (7 layers +dense encoder, 1 layer decoder, 500 dim)
- LSTM (1 layer encoder, 1 layer decoder, 500 dim) + linearisation
- Encode morphological features present in the input (GCN_{morph})

*model selection done on the development set


GCN performance on WebNLG

‡ Average BLEU-4 on 3 runs

*PKUWRITER, MELBOURNE and ADAPT neural systems participating on the WebNLG challenge

GCN performance on SR11Deep

* STUMBA-D and TBDIL non-neural systems with pipeline of classifiers

Example Outputs WebNLG

Input graph:

(William Anders dateOfRetirement 1969 - 09 - 01) (William Anders was a crew member of Apollo 8) (Apollo 8 commander Frank Borman) (Apollo 8 backup pilot Buzz Aldrin)

(LSTM) William Anders was a crew member of the OPERATOR operated Apollo 8 and retired on September 1st 1969.

(GCN) William Anders was a crew member of OPERATOR 's Apollo 8 alongside backup pilot Buzz Aldrin and backup pilot Buzz Aldrin .

(GCN⁺⁺) william anders , who retired on the 1st of september 1969 , was a crew member on apollo 8 along with commander frank borman and backup pilot buzz aldrin .

Example Outputs SR11Deep

Reference:

The economy 's temperature will be taken from several vantage points this week , with readings on trade , output , housing and inflation .

(LSTM) the economy 's accords will be taken from several phases this week , housing and inflation readings on trade , housing and inflation .

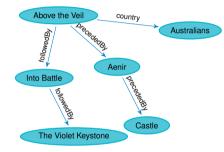
(GCN) the economy 's temperatures will be taken from several vantage points this week, with reading on trades output, housing and inflation.

Concluding Remarks

- GCN-based generation architecture that directly encodes explicit structure in the input
- GCN -based models outperform a sequential baseline on automatic evaluation
 - improve on over- and under- generation cases
- Relational inductive bias of the GCN encoder produces more informative representations of the input [Battaglia et al., 2018]

Concluding Remarks

- GCN-based generation architecture that directly encodes explicit structure in the input
- GCN -based models outperform a sequential baseline on automatic evaluation
 - improve on over- and under- generation cases
- Relational inductive bias of the GCN encoder produces more informative representations of the input [Battaglia et al., 2018]


Future work

- Other input graph representations
 - Abstract Meaning Representations (AMR; [Banarescu et al., 2013])
 - Scoped semantic representations [Van Noord et al., 2018]
 - Scene graphs [Schuster, et al., 2015]
- Multi-lingual training of GCN layers with universal dependencies [Mille, et al., 2017]

Code (PyTorch) + Data: github.com/diegma/graph-2-text

Thank you! Questions?

Separate Input Linearisation Step

Avobe the veil followedBy Into Battle | Avobe the veil followedBy the violet keystone | ... Avobe the veil country Australians | Avobe the veil followedBy Into Battle | ... Avobe the veil precededBy Aenir | Avobe the veil precededBy Castle | ...

Automatic Evaluation

Encoder	BLEU	METEOR	TER
LSTM	.526±.010		.43±.01
GCN	.535±.004		.44±.02
ADAPT	.606	.44	.37
GCN ⁺⁺	.559±.017	.39±.01	0.41±.01
Melbourne	.545	.41	.40
PKUWriter	.512	.37	.45

Encoder	BLEU	METEOR	TER
LSTM	.377±.007	$.65 {\pm} .00$.44±.01
GCN	$.647 {\pm} .005$	$.77 {\pm} .00$.24±.01
GCN+feat	$.666 {\pm} .027$	$.76{\pm}.01$.25±.01
Table	T	00440	

Table : Test results SR11Deep task.

Table : Test results WebNLG task.

Ablation Study

	BLEU		SIZE			
Model	none	res	den	none	res	der
LSTM	.543±.003	-	-	4.3	-	-
GCN						
1L	$.537 {\pm} .006$	-	-	4.3	-	-
2L	$.545 {\pm} .016$	$.553 {\pm} .005$	$.552 {\pm} .013$	4.5	4.5	4.7
ЗL	$.548 {\pm} .012$	$.560 {\pm} .013$	$.557 {\pm} .001$	4.7	4.7	5.2
4L	$.537 {\pm} .005$	$.569 {\pm} .003$	$.558 {\pm} .005$	4.9	4.9	6.0
5L	$.516 {\pm} .022$	$.561 {\pm} .016$	$.559 {\pm} .003$	5.1	5.1	7.0
6L	$.508 {\pm} .022$	$.561 {\pm} .007$	$.558 {\pm} .018$	5.3	5.3	8.2
7L	$.492 {\pm} .024$	$.546 {\pm} .023$	$.564 {\pm} .012$	5.5	5.5	9.6