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Lexicalisation of RDF properties

I Generating text from RDF data involves a serie of subtasks
I Property lexicalisation subtask

RDF property
lex−−→ Natural Language Phrase(s)

hasWonPrize
lex−→ { “was honoured with” , “received” }

I Challenges

indirect routeEnd
lex−−→ { “finishes at” }

opaque crew1up
lex−−→ { “is the commander of” }

variety find alternative lexicalisations
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Existing approaches

I words appearing in relation names or labels
Quelo [Trevisan, 2010]

crew1up
lex−−→ { “is the crew 1 up of”}

I distant supervision ideas – linking named entities

DBlexipediae [Walter et al., 2014a, Walter et al., 2014b]

spouse
lex−−→ { “divorced from”}

I open information (relation) extraction
I search for relation mentions in text / unrestricted
I exception: clustering phase + link to DBPedia properties

Patty [Nakashole et al., 2012]

Our approach is inspired by the work of [Bordes et al., 2014]

I Question Answering over general purpose Knowledge Bases (KB)

I distributed word representations, synthetic data, multi-task training
with paraphrases
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Lexicalisation with embeddings: Intuition

Embedding RDF triples and NL phrases in the same continuous
space

I ~t vector representation for triple t = (s, p, o)

I ~v vector representation for NL phrase v = “S relation mention O”

I similarity scoring function S t/v over ~t and ~v

X lex−→ ( s, hasWonPrize, o) “S was honoured with O” (high S t/v )

* lex−→ ( s, hasWonPrize, o) “S broke O” (low S t/v )
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Introduction Lexicalisation approach Evaluation and Results Conclusion

Approach overview
RDF property

lex−→ { ??? }

1. Learn embeddings of RDF triples and NL phrases

Similarity function S t/v (t, v)

2. Build sets of candidate NL phrases ( Lexp )

3. Rank candidate phrases using the scoring similarity function

v̂(t) = arg max
v ′∈Lexp

S t/v (t, v ′)

4. Extract lexicalisations from top ranked candidates
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Embeddings model

S t/v (t, v) = f (t)>.g(v)

f (t) = K>.φ(t)

g(v) = W>.ψ(v)

K ∈ Rnk×d embedding matrix for KB symbols

W ∈ Rnw×d embedding matrix for words



8/24

Introduction Lexicalisation approach Evaluation and Results Conclusion

Training

I T = {(t i , v i ); i = 1, · · · , |T |}
I automatic generation of NL phrases (≈ 5 per triple)

t i ( Aristotle, influenced, Christian philosophy )
v i “Christian philosophy is influenced by Aristotle.”

I data corruption
t′ ( Aristotle, computingMedia, Christian philosophy )
v i “Christian philosophy is influenced by Aristotle.”

I Ranking loss function

∀i , ∀t ′ 6= t i , [1− S s/v (t i , v i ) + S s/t(t ′, v i )]
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Multitask training of word embeddings on paraphrases

I extend vocabulary coverage

I cover alternative lexicalisations

I auxiliary task: paraphrases should have similar embeddings

Sp(pi , pj ) = g(pi )
>.g(pj )

g(p) = W>.ψ(p)

word embedding matrix W is shared by S t/v and Sp



9/24

Introduction Lexicalisation approach Evaluation and Results Conclusion

Multitask training of word embeddings on paraphrases

I extend vocabulary coverage

I cover alternative lexicalisations

I auxiliary task: paraphrases should have similar embeddings

Sp(pi , pj ) = g(pi )
>.g(pj )

g(p) = W>.ψ(p)

word embedding matrix W is shared by S t/v and Sp



10/24

Introduction Lexicalisation approach Evaluation and Results Conclusion

Multitask training

I P = {(pi , pj ), i , j = 1; · · · , |P|}
I PPDB dataset [Bannard and Callison-Burch, 2005]
I WikiAnswers [Fader et al., 2013]

(transformed question paraphrases)
pi “much coca cola be buy per year”
pj “much do a consumer pay for coca cola”

I DBPP a custom dataset

(bridge between entity names and common nouns)
pi “Amsterdam”
pj “Place”

I data corruption
pl “information on neem plant”

I Ranking loss function

∀i , j , l , ∀[1− Sp(pi , pj ) + Sp(pi , pl )]
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Approach overview
RDF property

lex−→ { ??? }

1. Learn embeddings of RDF triples and NL phrases

Similarity function S t/v (t, v)

2. Build sets of candidate NL phrases ( Lexp )

3. Rank candidate phrases using the scoring similarity function

v̂(t) = arg max
v ′∈Lexp

S t/v (t, v ′)

4. Extract lexicalisations from top ranked candidates



12/24

Introduction Lexicalisation approach Evaluation and Results Conclusion

Candidate lexicalisation sets

I L-LEXp lexically-related candidates
Wikipedia sentences ∩

WordNet (related synsets and derivationally related words)

p = crosses

WordNet Synset (v) cross, traverse, span, sweep
L-Candidate “Old Blenheim Bridge spans Schoharie Creek”

I E-LEXp extensionally-related candidates
Wikipedia sentences ∩

Semantic annotation of text (entity linking) [Walter et al., 2014a]

p = crew1up

RDF Triple 〈 STS-130, crew1up, George D. Zamka 〉
E-Candidate Zamka served as the commander of mission STS-130
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Candidate lexicalisation sets

I L-LEXp lexically-related candidates
Wikipedia sentences ∩

WordNet (related synsets and derivationally related words)

p = crosses

WordNet Synset (v) crossbreed, cross, hybridize, hybridise, interbreed
*L-Candidate “Shellbark hickory hybridizes with pecan”

I E-LEXp extensionally-related candidates
Wikipedia sentences ∩

Semantic annotation of text (entity linking) [Walter et al., 2014a]

p = spouse

RDF Triple 〈 Chuck Traynor, spouse, Linda Lovelace 〉
*E-Candidate Chuck Traynor was recently divorced from Linda Lovelace
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Approach overview
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Experimental setup

Data:

I Triples and Sentences (T ) dataset ˜300k pairs from DBPedia
from 53384 DBPedia triples from 149 relations

I Paraphrases (P dataset ˜3.5M pairs)
PPDB M size lexical and phrasal sets + trans. WikiAnswers + custom DBPP

Implementation:

I emb. dimension 100

I KB embedding randomly initialised

I word embeddings initialised with pre-trained GloVe vectors

I training with SGD
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Comparison

I 30 DBPedia properties

I gold lexicon developed manually for DBPedia properties
[McCrae et al., 2011]

https://github.com/ag-sc/lemon.dbpedia

I 3 automatic lexicons: Quelo, DBlexipediae , Patty
I various model variations:

- (L/E)-LEXp candidate sets: single, union and intersection
- thresholds: top 10, third quartile, frequency re-ranked, and

combinations thereof

https://github.com/ag-sc/lemon.dbpedia
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Results

System/goldLemonDBPPatterns Avg.NB Recall Precision F1
L-LEX(k=10) 9.9 0.3611 0.0875 0.1409
L-LEX(FreqQ3Limit(7,25)) 21.8 0.4583 0.0505 0.0909
L-LEX(All) 687.4 0.8194 0.0029 0.0057
E-LEX(k=10) 10 0.3333 0.0800 0.1290
E-LEX(FreqQ3Limit(7,25)) 23.3 0.5000 0.0514 0.0933
E-LEX(All) 1557 0.8056 0.0012 0.0025
union(k=10) 10 0.3889 0.0933 0.1505
union(FreqQ3Limit(7,25)) 10.8 0.4861 0.1080 0.1768
union(All) 2162.5 0.9444 0.0010 0.0021
L-LEXRandom(k=10) 9.9 0.2083 0.0505 0.0813
E-LEXRandom(k=10) 10 0.0833 0.0200 0.0323
Quelo 2.13 0.2917 0.3281 0.3088
DBlexipediae(k=10) 5.4 0.2500 0.1104 0.1532
Patty 936 0.5694 0.0015 0.0029

Micro-averaged Precision, Recall and F1 with respect to GOLD.



18/24

Introduction Lexicalisation approach Evaluation and Results Conclusion

Results

System/goldLemonDBPPatterns Avg.NB Recall Precision F1
L-LEX(k=10) 9.9 0.3611 0.0875 0.1409
L-LEX(FreqQ3Limit(7,25)) 21.8 0.4583 0.0505 0.0909
L-LEX(All) 687.4 0.8194 0.0029 0.0057
E-LEX(k=10) 10 0.3333 0.0800 0.1290
E-LEX(FreqQ3Limit(7,25)) 23.3 0.5000 0.0514 0.0933
E-LEX(All) 1557 0.8056 0.0012 0.0025
union(k=10) 10 0.3889 0.0933 0.1505
union(FreqQ3Limit(7,25)) 10.8 0.4861 0.1080 0.1768
union(All) 2162.5 0.9444 0.0010 0.0021
L-LEXRandom(k=10) 9.9 0.2083 0.0505 0.0813
E-LEXRandom(k=10) 10 0.0833 0.0200 0.0323
Quelo 2.13 0.2917 0.3281 0.3088
DBlexipediae(k=10) 5.4 0.2500 0.1104 0.1532
Patty 936 0.5694 0.0015 0.0029

(Quelo) recordedIn
lex−−→ { “recorded in” }
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Example output
programming
Language

written in, uses, include, based on, supports, is a part of, pro-
gramming language for (4/1)

affiliation member of, associated with, affiliated with, affiliated to, affiliate
of, accredited by, tied to, founded in, president of, associate
member of (4/1)

country village in, part of, one of, located in, commune in, town in, born
in, refer to, county in, country in, city in (2/1)

mountainRange mountain in, located in, include, range from, mountain of,
mountain range in, part of, lies in, reach, peak in, find in, highest
mountain in (8/1)

distributor sell, appear in, allocate to, air on, release, make, star in, appear
on (2/2)

leader lead to, leader of, led by, is a leader in, visit, become, lead, lead
producer of, president of, elected leader of, left (6/3)

system= Union.FreqQ3Limit7-25
italics= items in the gold
bold= items found by our system not in the gold
(N/G) N= nb. items found by our system G= nb. of items in the gold
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Conclusion

I Learn embeddings of word representations and RDF triples to
identify plausible lexicalisations

I When applied to DBPedia we obtain competitive results with
existing approaches
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Future work

I Conduct a larger scale evaluation
larger number of properties, data-type properties

I Extend the gold lexicon (+ crowd-sourcing validation)

I Explore a more complex representation of natural language
phrases (currently a bag-of-words)
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Thank you !

Questions ?

We would like to thank Sebastian Walter for kindly providing us with the MATOLL

corpus [Walter et al., 2014b]
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