A Statistical Approach to Extract Chinese Chunk Candidates from Large Corpora

Zhang Le

www.nlplab.cn
Natural Language Processing Lab
Northeastern University, P.R. China
Organization

- Introduction
- Overall Procedure
- Fast Statistical Substring Reduction Algorithms
- Post Processing
- Evaluation
- Conclusion & Future Work
Organization

- Introduction
- Overall Procedure
- Fast Statistical Substring Reduction Algorithms
- Post Processing
- Evaluation
- Conclusion & Future Work
Introduction

Why traditional **bilingual translation unit** acquisition methods fail for Chinese?

- No large scale parsed corpus available
- Word segmentation problem of Chinese (and other oriental language)
- Sentence aligned bilingual corpus are hard to obtain
Our Approach

- Obtain chunk candidates from large monolingual corpora
- Extract bilingual translation unit from monolingual chunk candidates with the help of a small amount of annotated parallel corpus
- Using the acquired bilingual translation unit to promote translation result

I saw the heavy sea.

A Statistical Approach to Extract Chinese Chunk Candidates from Large Corpora – p.5/15
Our Approach

- Obtain chunk candidates from large monolingual corpora
- Extract bilingual translation unit from monolingual chunk candidates with the help of a small amount of annotated parallel corpus
- Using the acquired bilingual translation unit to promote translation result

I saw the heavy sea. <----> 我看见了波涛汹涌的大海.
Previous Work

The work of (Fung Pascale, 1994) showed: without the help of a machine-readable dictionary, the extracted trigrams and 4-grams from Chinese raw corpus contain only 31.3% and 36.75% valid phrases respectively.

A **Statistical Substring Reduction** procedure is required to filter out unnecessary n-gram sequences.
Statistical Substring Reduction

In order to rule out the majority “garbage strings” from the initial N-gram set, a *Statistical Substring Reduction* algorithm need to be employed to reduce some “garbage substrings” to their super strings.
Statistical Substring Reduction

In order to rule out the majority “garbage strings” from the initial N-gram set, a *Statistical Substring Reduction* algorithm need to be employed to reduce some “garbage substrings” to their super strings.

亚太经合组织 (Asia-Pacific Economic Cooperation) 10 times
亚太经合组 (Asia-Pacific Economic) 10 times
In order to rule out the majority “garbage strings” from the initial N-gram set, a Statistical Substring Reduction algorithm need to be employed to reduce some “garbage substrings” to their super strings.

亚太经合组织 (Asia-Pacific Economic Cooperation) 10 times
亚太经合组 (Asia-Pacific Economic) deleted 10 times
Statistical Substring Reduction

In order to rule out the majority “garbage strings” from the initial N-gram set, a *Statistical Substring Reduction* algorithm need to be employed to reduce some “garbage substrings” to their super strings.

Asia-Pacific Economic Cooperation (Asia-Pacific Economic) 10 times

Since the latter is the substring of the former with the same frequency. This procedure is called *Statistical Substring Reduction*, which reduces some “garbage substrings” to their super strings using frequency information.
A Simple SSR Algorithm

Traditional Statistical Substring Reduction algorithm (Han et al., 2001) is an $O(n^2)$ algorithm and unable to handle large corpora.

1: for $i = 1$ to n do
2: for $j = 1$ to n do
3: if $X_i \propto X_j$ and $f_i - f_j < k$ then
4: $M_i = 1$
5: end if
6: end for
7: end for
Two Fast SSR Algorithms $O(n)$

To address the time problem in traditional SSR algorithm, we proposed two new Fast Statistical Substring Reduction (FSSR) algorithms, both have an $O(n)$ time complexity under ideal condition. (LÜ 2003) gives a mathematical proof on the equality of four SSR algorithms.
Post Processing

After performing SSR operation on extracted N-gram set, a post processing procedure is carried out to do some further filtering.

- Mutual Information Filtering
- Stopword List
- Language Specific Treatment (word length, etc.)

Post processing method is simple and effective for this task.
Performance of FSSRs

We perform three SSR algorithms on three corpora of different sizes (2 - 20-gram):

<table>
<thead>
<tr>
<th>Label</th>
<th>Time (Including I/O)</th>
<th>Algo 1</th>
<th>Algo 2</th>
<th>Algo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>corpus1 (3.5MB)</td>
<td>17 min 20 sec</td>
<td>3.3 sec</td>
<td>4.4 sec</td>
<td></td>
</tr>
<tr>
<td>corpus2 (50MB)</td>
<td>27 hours</td>
<td>48.8 sec</td>
<td>54.6 sec</td>
<td></td>
</tr>
<tr>
<td>corpus3 (1GB)</td>
<td>N/A</td>
<td>8 min 23 sec</td>
<td>7 min 25 sec</td>
<td></td>
</tr>
</tbody>
</table>

Even on small corpus like corpus1, the two FSSRs are 200 - 300 times faster than traditional SSR algorithm.
Performance of FSSRs

We perform three SSR algorithms on three corpora of different sizes (2 - 20-gram):

<table>
<thead>
<tr>
<th>Label</th>
<th>Time (Including I/O)</th>
<th>Algo 1</th>
<th>Algo 2</th>
<th>Algo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>corpus1 (3.5MB)</td>
<td>17 min 20 sec</td>
<td>3.3 sec</td>
<td>4.4 sec</td>
<td></td>
</tr>
<tr>
<td>corpus2 (50MB)</td>
<td>27 hours</td>
<td>48.8 sec</td>
<td>54.6 sec</td>
<td></td>
</tr>
<tr>
<td>corpus3 (1GB)</td>
<td>N/A</td>
<td>8 min 23 sec</td>
<td>7 min 25 sec</td>
<td></td>
</tr>
</tbody>
</table>

Even on small corpus like corpus1, the two FSSRs are **200 - 300** times faster than traditional SSR algorithm.
Extraction Result

Manually checking 1000 candidate n-gram sequences randomly: **86.3%** are meaningful chunk candidates. Some results from PeopleDaily 2000 corpus:

<table>
<thead>
<tr>
<th>Meaningful Chunks</th>
<th>Nonsensical Chunks</th>
</tr>
</thead>
<tbody>
<tr>
<td>被偷 (be stolen)</td>
<td>丽画</td>
</tr>
<tr>
<td>明确地表示 (to express explicitly)</td>
<td>院所属</td>
</tr>
<tr>
<td>可口可乐公司 (the Coca-Cola company)</td>
<td>处寻找</td>
</tr>
<tr>
<td>发展民族教育 (developing national education system)</td>
<td>著名女</td>
</tr>
<tr>
<td>语重心长地说 (to tell with great patience)</td>
<td>明确保</td>
</tr>
<tr>
<td>瓦斯爆炸事故 (gas explosion accident)</td>
<td>成社会主义</td>
</tr>
<tr>
<td>义务植树活动 (tree-planting action by volunteers)</td>
<td>量逐年增</td>
</tr>
<tr>
<td>遇到许多困难 (come across many difficulties)</td>
<td>通过了专家</td>
</tr>
<tr>
<td>增进了相互了解和友谊 (to improve the friendship and mutual understanding)</td>
<td>推动两岸人员往来和各</td>
</tr>
</tbody>
</table>
Conclusion

Highlights of our method:

- Purely statistical method (Language in-depend, no human intervention)
- Efficient & Effective (two FSSRs)
- Encouraging result (35% → 85%)
Conclusion

Highlights of our method:

- Purely statistical method (Language in-depend, no human intervention)
- Efficient & Effective (two FSSRs)
- Encouraging result (35% → 85%)

Drawbacks:

- Not 100% accurate, some meaningful chunk candidates are discarded
- Post processing is too simple
- Not linguistic aware
Future Work

Some perspective:

- Integration of Statistical Language Model (SLMs)
- Resort to shallow parsing technology (POS, NP Chunk, etc.)
- Proper name identification
This is the End, Thank you!