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Abstract 
Non-lexical prosodic analysis is our term for the process of 
extracting prosodic structure from a speech waveform without 
reference to the lexical contents of the speech. It has been 
shown that human subjects are able to perceive prosodic 
structure within speech without lexical cues. There is some 
evidence that this extends to the perception of disfluency, for 
example, the detection interruption points (IPs) in low pass 
filtered speech samples. In this paper, we apply non-lexical 
prosodic analysis to a corpus of data collected for a speaker in 
a multi-person meeting environment. We show how non-
lexical prosodic analysis can help structure corpus data of this 
kind, and reinforce previous findings that non-lexical acoustic 
cues can help detect IPs. These cues can be described by 
changes in amplitude and f0 after the IP and they can be 
related to the acoustic characteristics of hyper-articulated 
speech. 

1.1.1.1. Introduction 
Human subjects respond to prosodic structure without 
necessarily understanding the lexical items which make up the 
utterance. For example event-related brain potential (ERP) 
studies have shown a reliable correlation with phrase 
boundaries when utterances are made lexical nonsensical, 
either by humming the words, or by replacing them with 
nonsense words [9]. The use of prosodically rich pseudo 
speech for artistic purposes (such as R2D2 in star wars, and 
The Teletubbies amongst others) reinforce these findings. 
This effect, of apparently understanding prosodic structure 
without lexical cues, extends to the human perception of 
disfluency. Lickley [7] showed that human subjects could 
recognise interruption points, the boundary between disfluent 
and fluent speech, in low pass filtered speech where no lexical 
cues were present. 

Non-lexical prosodic analysis (NLPA) attempts to mimic 
this human ability of non-lexical prosodic recognition. 
Initially, interest in NLPA was motivated largely by the 
objective of improving automatic speech recognition (ASR) 
technology, for example, by pre-processing the speech to find 
syllables [5] or prosodic prominence [3]. However, 
improvements in statistical modeling in ASR meant that, 
often, the speech recogniser itself was best left to model 
prosodic effects internally. Recently, there has been a 
renewed interest in NLPA techniques in order to address the 
problem of recognising, segmenting, and characterising very 
large spontaneous speech databases. Tamburini and Caini [10] 
point out that identifying prosodic phenomena is useful, not 
only for ASR and speech synthesis modeling, but also for 
disambiguating natural language and for the construction of 
large annotated resources. In these cases, the ability to 
recognise prosodic structure without lexical cues has two 
main advantages: 

 
1. It does not require the resource intensive, and language 

dependent, engineering required for full speech 
recognition systems. 

2. It can offer a means of modeling the human recognition of 
prosodic structure which in turn could lead to an improved 
understanding of human speech perception and production. 

The ability of human subjects to recognise interruption points 
(IPs) without lexical information raises the question of 
whether NLPA can do as good a job. Although previous work 
has looked at this problem in some depth (e.g. [4], [7]), NLPA 
offers the prospect of a structured analysis that could be 
carried out automatically over very large speech databases. In 
addition, the presence of previous detailed studies allows us to 
validate the overall approach.  

The non-lexical detection of IPs is also of interest from the 
perspective of determining dialogue structure. Recent work 
suggests that disfluency patterns could be used to signal the 
speakers’ cognitive load [1] and thus might be used to 
determine areas in dialogue involving complex concepts, 
ideas or planning.   

We will first describe in more detail the corpus of speech 
we analysed and the IP phenomena. Next, we will present the 
details of the NLPA we applied to this corpus followed by 
results for a set of acoustic features which may cue the non-
lexical perception of IPs. Finally, we will discuss limitations 
with the approach and possible future work. 

2.2.2.2. Corpus and disfluency coding 
Our data was selected from the ICSI meeting corpus [6]. This 
consists of 75 dialogues collected from the regular weekly 
meetings of various ICSI research teams. Meetings in general 
run for under an hour and have on average 6.5 participants 
each recorded on a separate acoustic channel. The speech is 
segmented into spurts, defined as periods of speech which 
have no pauses greater than 0.5 seconds. 

The data we present here is taken from a single speaker
1
 

taken from two dialogues. Disfluencies are coded as part of 
the dialogue act coding [2], where interruption points are 
shown as a hyphen in the speech transcription. In order to 
avoid complexity caused by multi-speaker interaction and 
multiple disfluencies, we looked only at phrase boundaries 
and IPs where:  
• The same speaker continued speaking after the interruption 

point or phrase break 
• No other speakers were speaking within 0.5 seconds of the 

break 
• There was at least 0.5 seconds between any breaks.  
Pause duration is the clearest acoustic cue of a prosodic break 
and can be used to disambiguate between IPs and phrase 
boundaries with some success. In general, the longer the 
pause, the more likely the break is a phrase boundary. 
However there are plenty of examples of phrase boundaries 
followed by a short pause. An interesting question is whether 

                                                
1We hope to increase the scale of this analysis for the final version of 
the paper 
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we can disambiguate between these phrase boundaries and IPs 
followed by a similar short pause. In order to concentrate on 
this problem, we limited the analysis to IPs and phrase 
boundaries where the autosegmenter did not insert a following 
pause.  

In this study disfluencies are categorised as repetitions: 
"right to my... my right" 
substitutions: 
"I don't suppose you've got the balloons... the baboons?" 
insertions: 
"parallel with the ravine... the word ravine" 
and deletions:  
"oh no what... the line stops at the flagship" 
The three dots in the above examples mark the interruption 

point (IP) (which may or may not be followed by a pause). 

3.3.3.3. Non-lexical prosodic analysis 
Any acoustic feature can be used to characterise prosody 
without lexical input. However, a good starting point is 
features which are reasonably ubiquitous, cross linguistic and 
have been shown to be sufficient for much human 
interpretation of prosodic structure. On this basis, amplitude 
and fundamental frequency are clear starting points. The 
syllable is a typical means of structuring this acoustic 
information. Within prosodic theory prominence is associated 
with syllables, in particular syllable nuclei. Therefore, a first 
step in any NLPA is syllable extraction. Howitt [5] reviews 
many of the current algorithms for segmenting speech into 
syllables. If we evaluate these algorithms in terms of how well 
they predict the syllable boundaries compared to those 
produced by human segmentation (or even by 
autosegmentation), they typically perform rather poorly. 
However, for NLPA we are not attempting to segment speech, 
our intention is rather to characterise the prosodic structure. 
Given that much of the perceived amplitude and pitch change 
occurs across the syllable nucleus, finding the extent of the 
nuclei is more important than determining the syllable 
boundaries. In fact, most simple syllable detection algorithms 
will find 80% of the syllable nuclei and the syllables they 
typically miss are unstressed, short syllables, which tend to 
carry much less prosodic information. In addition, Tamburini 
and Caini [10] found that the duration of nuclei correlates 
closely to the overall syllable duration and therefore the 
syllable nuclei duration can be used to measure the rate of 
speech as well as assessing prominence.   

On this basis, we extracted syllable nuclei as suggested by 
Howitt [5]. This involves band pass filtering speech between 
300-900 Hz and then using peak picking algorithms to 
determine the location and extent of nuclei. For these 
experiments we used a simpler peak picking algorithm than 
the modified convex-hull algorithm [8] described by Howitt 

[5] and used by Tamburini and Caini [10]. 
Figure 1 shows an example of the results of the syllable 

extraction algorithm we applied. The top shows the lexical 
contents of the speech, followed by a waveform. Below the 
waveform is the energy of the band pass filtered speech

2
. The 

labels below the band pass filtered speech show the syllable 
nuclei (black line) and the extent of the nuclei (grey lines). 
The process for determining these nuclei is as follows: 
1. Remove large portions of silence from the data and divide 

the speech into spurts - continuous speech with less than 
0.5 seconds gap. Allow 0.1 seconds of silence before and 
after each spurt. 

2. Band pass filter the speech between 300-900 Hz. 
3. Examine the distribution of the energy for the speaker 

across the data and set a threshold for syllable energy at 
the 35th percentile. 

4. Find the maximum points in the region. A maximum point 
has a previous and subsequent lower value with a number 
of equal values in between. Order the points by amplitude 
and go through the list picking syllable nuclei providing a 
previous nuclei has not already been picked within a range 
of 0.1 seconds. 

5. Set the boundaries as equidistant between nuclei in the 
same voiced region otherwise to the threshold edge of the 
region.   

6. Extract f0 values, using the entropics get_f0 program, for 
the start, centre and end of the syllable nuclei. 

We can assess the prominence of each syllable either based on 
amplitude and duration (sometimes described as stress 
prominence [10]), or the f0 variation over the syllable nucleus 
(sometimes described as accent prominence [10]). Phrase 
boundaries are assessed both on the basis of pauses, 
determined by a simple threshold silence detector, and 
boundary f0, taken as the f0 at the edge(s) of the surrounding 
syllable nuclei. 

4.4.4.4. Analysing IP boundaries with NLPA 
Previous work, Lickley [7] and Hirschberg et al [4], has shown 
a number of interesting acoustic features which can be 
associated with IPs. All the features occur after the IP with no 
discernable acoustic cues before the IP. Both [7][4] found a 
tendency for increased amplitude after the IP, higher f0 and 
longer duration. These are all correlates of stressed syllables 
and also of hyper-articulated speech. Hirschberg et al [4] 
describe these acoustic features as cues for corrected speech 
and describe a machine learning approach for classifying 
corrected speech on the basis of these features. This was then 

                                                
2Note the speech and syllable boundaries are slightly out of 
alignment due to a processing error. The syllable end points 
are advanced by 5ms. This will be addressed in the final paper. 

 
Figure 1:  Automatic syllable detection. The lexical contents are shown at the top followed by the waveform, band pass (300-900Hz) energy of the 
speech and at the bottom labels assigned for syllable nuclei (N) and their initial boundary (bI) and end boundary (bE). 
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applied to reduce recognition error from 25% down to 16%. 
However, the extent to which these utterances contained IPs 
was not reported. In Lickley [7], human judgments of low pass 
filtered speech utterances show a significant, although far from 
consistent, effect across materials. Human subjects tended to 
misclassify disfluent utterances as fluent utterances more then 
visa-versa with the best group of human subjects correctly 
classifying 34% of disfluent utterances as disfluent. In 
addition, the significant effect in this study appeared to be 
dominated by the presence and differences of pause durations 
rather than other acoustic cues. 

In this data, as stated earlier, only boundaries with pauses 
not discernable to the autosegmenter where examined. We 
compared the results for IPs and normal phrase breaks. As in 
[7] [4], we looked at acoustic cues in the form of f0 variation, 
syllabic nucleus amplitude and syllabic nucleus duration after 
the boundary point. 

5.5.5.5. Results 
We began by looking at the f0 change across the two syllables 
to the right of the boundaries. Shown in figure 2 are six f0 
points. These values are taken from the first two syllable 
nuclei found with NLPA subsequent to the phrase or IP 
boundary. It is interesting to note a lack of a homogeneous f0 
structure in either IP or for PH (Phrase conditions). However, 
differences are clearly present between both groups. F0 in the 
IP case tends to be higher and varies more throughout the two 
syllables. 

On the basis of this plot we chose three f0 features to 
examine statistically: the f0 before the boundary, the f0 
following the boundary and the variance of the f0 across the 
two syllables following the boundary. In addition, we 
combined the log of the raw amplitude of the first following 
syllable with the log of the duration of its nucleus by 
multiplying the factors together to give an overall prominence 
factor. Thus short, high energy syllable nuclei where regarded 
as having similar prominence to long, lower energy syllable 

nuclei. 
An independent t-test grouped by IP and phrase boundary 

(PH) is shown in Table 1. Although significant the factors are 
only marginally so and only f0 pre- and post- boundary 
factors remained significant after bonferroni correction. If we 
examine the cell means in figures 3 and 4 the results are in 
line with previous published results. We see higher initial f0 
values for after IPs, more f0 variance and more prominence 
caused by amplitude and duration. 

If we use these factors in a discriminant analysis, we find 
we can categorise 72.8% of the data (71.6% with cross 
validation), see Table 2. Given the lack of pause data, this is 
in line with previous studies. 

 

 
Table 1: Independent t-test for acoustic cues following IPs and Phrase 
Boundaries. 
 

t df Sig. (2-tailed)

f0 pre boundary 4.442 60.542 0.000 0.000

f0 post boundary 2.654 59.139 0.010 0.040

2.289 59.447 0.026 0.104

2.468 68.079 0.016 0.064
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Figure 2: F0 across the two syllable nuclei following both IPs and phrase breaks where no or minimal pause cues are present. (BI - initial boundary of 
syllable nucleus, N - centre of syllable nucleus, BE - end  boundary of syllable nucleus). 

Table 2:  Results of discrimant analysis using acoustic cues 
 
Discriminant Analysis Classification

PH IP

Original PH 36 12

IP 10 23  
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Figure 3: F0 across IP boundary and phrase boundary (PH). 
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Figure 4: F0 variance and prominence -nucleus 
ln(amplitude)ln(duration)) - after IP and phrase boundary (PH). 
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6.6.6.6. Conclusion 
Results show that NLPA can be used for characterising 
disfluency. Furthermore, that it would seem to perform as 
well, or better, than human subjects given the same task. 
Perhaps the most interesting feature of the work is that NLPA 
offers a non-lexical structure for dealing with timing. Using 
the syllable nucleus we can implicitly scale f0 contours which 
might allow a more structured approach to characterising 
intonation non-lexically. Although the prominence feature 
presented in this work is perhaps an over simplification of the 
perceptual effect of duration and amplitude, it does allow a 
starting point for an improved system. Similarly it would be 
an interesting idea to replace the f0 variance with a more 
perceptually based model of accentedness. 

However, the success of NLPA depends largely on the 
autosyllabification process. Overgeneration of syllables and 
overestimation of syllable nuclei, for example, caused by 
liquids or nasals, could present a significant problem in terms 
of aligning f0 contours with the output. In future work we will 
evaluate the syllabification algorithm quantitatively against 
state-of-the-art autosegmentation. In addition, other acoustic 
features, perhaps based on spectral entropy or spectral tilt, 
could also be added to the system.  Finally, there is a 
possibility that the prosodic structure produced by NLPA 
might be more functionally valid than one using lexical data 
where syllables are, in general, prescriptively assigned. 

The IP analysis reinforces findings from previously 
published work. The results for automatic disambiguation 
(especially given the lack of pause information) are 
promising. However, in order to really test how useful these 
factors are for discrimination, we must also see to what extent 
they can tell any boundary (syllable/word) from an IP. In 
addition, as pointed out by Hirschberg et al [4], different 
speakers have different characteristics in terms of hyper-
articulation. On this basis further work requires the analysis of 
many more subjects. 
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