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Abstract

We consider the problem of uniformly sampling a vertex of a transportation polytope with m
sources and n destinations, where m is a constant. We analyse a natural random walk on the edge-
vertex graph of the polytope. The analysis makes use of the multi-commodity flow technique of
Sinclair [Combin Probab Comput 1 (1992), 351–370] together with ideas developed by Morris
and Sinclair [SIAM J Comput 34 (2004), 195–226] for the knapsack problem, and Cryan et al.
[SIAM J Comput 36 (2006), 247–278] for contingency tables, to establish that the random walk
approaches the uniform distribution in time nO(m2).

1 Introduction

In this paper we study the mixing time behaviour of a natural random walk on the edge-vertex graph
of a transportation polytope with m sources and n destinations. We are able to show that this walk
converges to the uniform distribution on the vertex set in time nO(m2). Therefore the random walk
mixes rapidly whenever the number of sources m is a constant. As far as we are aware, this is the
first result proving rapid mixing of a random walk on the graph of any non-trivial class of polytopes.
Very little is known about the mixing times of random walks on polytope graphs in general. In fact,
it is not even known whether the diameter of the graph is polynomially bounded in the dimension and
number of facets of the polytope. (See Kalai [19] and Ziegler [32].) In consequence, Markov chain
Monte Carlo (MCMC) has not been well explored as a means of sampling, or approximately counting,
vertices of general polytopes. Even for special classes of polytopes, such as arbitrary transportation
polytopes, approximate counting algorithms are not known to exist, either by MCMC or by other
means (see, for example, Pak [28]). This is despite the fact that the diameter of any transportation
polytope is bounded above by a linear function in m + n (see Brightwell et al. [2]; an earlier paper by
Dyer and Frieze [13] gave a polynomial upper bound). In fact, the only previous mixing results known
for random walks on the edge-vertex graph of a polytope are for very special, and highly symmetric
polytopes, such as the n-cube [7] and the Birkhoff polytope [27].

Our approach to proving rapid mixing for our random walk on the transportation polytope is
inspired by the proof of Cryan, Dyer, Goldberg, Jerrum and Martin [3] of rapid mixing of a natural
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Markov chain for sampling contingency tables. This was itself based on the “balanced permutation”
ideas of Morris and Sinclair [24, 25], developed for the knapsack problem. We discuss the role of
balanced permutations in proving rapid mixing for Markov chains on tabular combinatorial structures
in §4. For now, we note that following the line of proof given in [3], and using the m-dimensional
balanced permutations of [24], would lead inevitably to a mixing time bound of n2O(m)

for our random
walk. To obtain our improvement in the exponent, from exponential to polynomial, it is necessary to
sharpen the tools of [24, 25] using the special structure of the problem at hand. Our improvement
then results principally from the fact that we can prove that a strongly O(m2)-balanced nO(m2)-
uniform permutation exists for this problem. Note that it is unknown whether a strongly-balanced
almost-uniform permutation exists for an arbitrary set of m-dimensional vectors, when m is variable.
(See [24] for further information.)

Our paper is organised as follows: In §2 we give basic information and background concerning
the transportation polytope and the natural random walk on that polytope. In §3 we list results about
the structure of vertices and edges of the transportation polytope, and prove upper and lower bounds
on the number of adjacent edges of any vertex (the ratio of the upper bound to the lower bound is a
key parameter in our definition of the random walk). §4 introduces a new Markov chain called a heat-
bath chain, which can make larger moves on the edge-vertex graph than the natural random walk,
but which also converges to the uniform distribution on the vertices of the transportation polytope.
We also give formal definitions of balanced permutations, and give intuition about how they can be
used to construct a good multi-commodity flow for certain Markov chains on combinatorial structures
with a “tabular” structure. The heat-bath chain is then analysed in the next two sections. In §5, we
present our improved balanced almost-uniform permutations (based on the permutations of Morris
and Sinclair [25]), which will be used in the analysis of the heat-bath chain. In §6 we prove that the
heat-bath chain mixes rapidly, when the number of sources is constant. In §7 we prove, by comparison
to the heat-bath chain, that the natural random walk also mixes rapidly in this case. In §8 we show how
to use our sampling algorithm to obtain a polynomial-time algorithm to approximately count vertices
of the transportation polytope when m is constant.

2 Background

The transportation problem (TP) is a classic problem in operations research. The problem was posed
for the first time by Hitchcock in 1941 [18] and independently by Koopmans in 1947 [21], and ap-
pears in any standard introductory course on operations research. It is the combinatorial optimization
problem of assigning shipments of some commodity from sources to destinations so that the total
transportation cost is minimized. We are given m sources and a list r = (r1, . . . , rm) of supplies for
these sources (ri is the supply at source i). We are given n destinations and a list c = (c1, . . . , cn)
of demands for these destinations (cj is the demand at destination j). Without loss of generality, we
assume that

∑m
i=1 ri =

∑n
j=1 cj , and define N =

∑m
i=1 ri. Let t i

j denote the cost of transporting one
unit from source i to destination j, for 1 ≤ i ≤ m, 1 ≤ j ≤ n. We use the somewhat uncommon
notation t i

j to denote the i, j element of a matrix.
We will represent an assignment to the variables of the transportation problem by a m × n-

dimensional matrix X , and write Xj to denote the j-th column of X (Xi
j denotes the i-th entry

of column Xj). For integers p ≤ q, let [p, q] denote the set of integers {p, . . . , q}. Similarly (p, q]
denotes the set {p + 1, . . . , q} etc. Also [p] denotes [1, p] for p > 0. The TP, satisfying all supplies
and demands at minimum total transportation costs, is formulated by the following linear program:
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min
m∑

i=1

n∑
j=1

t i
jX

i
j

Xi
j ≥ 0 for all i ∈ [m], j ∈ [n] (1)

n∑
j=1

Xi
j = ri for all i ∈ [m] (2)

m∑
i=1

Xi
j = cj for all j ∈ [n] (3)

The set of feasible solutions of the TP, the feasible region, is a convex polytope P(r, c) in Rmn

called the transportation polytope. The existence of a strongly polynomial time algorithm for the TP
follows directly from the seminal work of Tardos [31]. Orlin [26] gave a strongly polynomial time
primal simplex algorithm for the more general minimum cost flow problem.

The integer feasible solutions for the TP arise in another context. Given a list of non-negative
integer row sums and column sums, a contingency table is defined to be any m × n matrix of non-
negative integers with the given row and column sums. Therefore the set of integer feasible solutions
to the TP corresponds exactly to the set of contingency tables with row sums (r1, . . . , rm) and column
sums (c1, . . . , cn) [6]. The problem of generating contingency tables almost uniformly at random has
been widely studied, for example, by Dyer, Kannan and Mount [15], Diaconis and Saloff-Coste [9],
Dyer and Greenhill [14], Morris [23], Cryan et al. [3] and Dyer [12]. In particular, it was shown in [3]
that a 2× 2 “heat-bath” Markov chain is rapidly mixing when the number of rows is constant.

The minimum cost for a TP is always attained at a vertex. Therefore counting and enumerating the
vertices of transportation polytopes is of interest. Some results on the complexity of enumerating the
vertices of a polytope appeared in Dyer [11], where it was shown to be #P-complete to count exactly
the number of vertices of a 2 × n transportation polytope,1 and that it is NP-complete to decide if a
2× n transportation polytope is degenerate.

In this paper we consider the problem of sampling the vertices of P(r, c) almost uniformly at
random, when the number of sources m is a constant. We define a Markov chainW on the set Ω of all
vertices of P(r, c) and prove it is rapidly mixing. Our chainW is a random walk on the edge-vertex
graph of the polytope P(r, c). This graph, also called the skeleton of the transportation polytope,
contains a vertex Z for every vertex of P(r, c), and an edge (Z,W ) for every pair of vertices Z,W
that form an edge of P(r, c). We denote the edge-vertex graph (see Definition 2 below) by G(W).

By Lemma 5 of §3, we know that any vertex Z of P(r, c) has at most dm incident edges, where
dm = nm is polynomially bounded in n.

Definition 1 A single step of our Markov chainW is performed as follows: if Z is the current vertex,
we walk along any incident edge of Z with probability 1/2dm.

If deg(Z) denotes the vertex degree of Z in G(W), then the probability of remaining at Z is 1 −
deg(Z)/2dm. A well-known result of Balinski [1] states that the edge-vertex graph of any convex
polytope of dimension k is k-connected. Therefore, G(W) is connected, and the Markov chainW is
irreducible. Also, at any given step, the probability of remaining at the current vertex is at least 1/2,
so W is aperiodic. Hence W is ergodic and therefore has a unique stationary distribution. Also,

1In fact, [11] only claims NP-hardness, but the proof establishes #P-completeness.
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for any two vertices Z, W of P(r, c) such that Z 6= W , PrW [Z,W ] = PrW [W,Z] (this has the
value 1/2dm if Z is adjacent to W , and 0 otherwise), which implies that the unique stationary distri-
bution forW is the uniform distribution. Observe that all “null” steps at Z, whereW remains at Z,
can be simulated by updating the clock with a single geometrically distributed random variable, and
then moving to a neighbour of Z chosen uniformly at random, provided that the end time has been
reached.

We will show thatW is rapidly mixing by first showing that a “heat bath chain”, which can make
much larger moves in the edge-vertex graph, mixes rapidly. This chain, MHB, is described in §4,
and analysed in §5–6. Subsequently, in §7, we use the comparison technique of Diaconis and Saloff-
Coste [8] (see also Randall and Tetali [29]) to lift the mixing result fromMHB toW . Finally, in §8, we
outline how sampling can be used to count approximately the number of vertices of a transportation
polytope. However, first of all in §3 we present structural results concerning the vertices and edges
of P(r, c), and justify our definition of dm.

3 Vertices and Edges

For basic information about polytopes we refer the reader to Ziegler [32], and for specific details about
transportation polytopes to Klee and Witzgall [20]. For basic information on the linear programming
formulation and a simplex algorithm for the transportation problem we refer to any introductory text-
book on operations research, e.g. [17]. We mention a few highlights here. It is shown in [20] that
P(r, c) has dimension (m− 1)(n− 1).

Now we give a formal definition of the edge-vertex graph of a polytope:

Definition 2 Let P ⊆ Rr be any polytope. F ⊆ P is a face of P iff

F = P ∩ {Z : cZ = c0},

for some c ∈ Rr and some c0 ∈ R such that cZ ≤ c0 holds for all Z ∈ P .
The face is non-trivial if F 6= ∅ and F 6= P .
A facet of P is a non-trivial face F such that dim(F ) = dim(P )− 1 = r − 1.
An edge of P is a non-trivial face F such that dim(F ) = 1.
A vertex of P is a non-trivial face F such that dim(F ) = 0 (F = {X} for some X ∈ P ).
The edge-vertex graph of P is the graph G which contains a vertex X for every vertex of P and an
edge connecting X to Y iff {αX + (1− α)Y : α ∈ [0, 1]} is an edge of the polytope P .

All facets of the polytope P(r, c) correspond to Xi
j ≥ 0 for some i ∈ [m], j ∈ [n], and therefore

every face of P(r, c) corresponds to setting Xi
j = 0 (when X is represented in tabular format) for

some number of (i, j)-pairs. The following lemma is due to Dantzig [5] and others (see Klee and
Witzgall [20] for a history).

Lemma 3 If (r1, . . . , rm) and (c1, . . . , cn) are lists of positive values such that
∑m

i=1 ri =
∑n

j=1 cj ,
then for every vertex of P(r, c), the (i, j)-pairs corresponding to non-zero coordinates of that vertex
form a spanning forest F on the bipartite graph [m]] [n]. This implies that each vertex of P(r, c) has
no more than n + m− 1 non-zero coordinates.

A non-degenerate vertex has exactly n+m−1 non-zero coordinates, corresponding to a spanning
tree on [m] ] [n].
Any (m − 1)(n − 1)-dimensional transportation polytope has at most mn−1nm−1 ≤ (em)n+m−1

vertices (for n ≥ m ≥ 2). 2
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We note that any vertex of P(r, c) must have at least n non-zero coordinates, and therefore any vertex
has between n and n + m − 1 (inclusive) non-zero coordinates. If P(r, c) is non-degenerate, then
every vertex will have n + m − 1 non-zero coordinates in one-to-one correspondence with the basic
variables of a basic feasible solution of the linear program (1)-(3) (see e.g. [17]). If Z has n+m−1−q
non-zero coordinates in total (0 ≤ q ≤ m − 1), we say it has degeneracy q. We sometimes refer to
co-ordinates as cells (of the tabular representation of Z). The spanning forest FZ of [m] ] [n] of a
vertex Z with degeneracy q consists of q + 1 vertex disjoint trees. A spanning forest FZ together
with any set of q edges which creates a spanning tree of [m] ] [n], corresponds uniquely to a basic
feasible solution of (1)-(3), where the m + n − 1 basic variables of this solution are the cells of Z
corresponding to the edges of this spanning tree (the q added edges correspond to basic variables with
value 0). Thus, any degenerate vertex Z of the polytope corresponds to a number of basic feasible
solutions of (1)-(3), and each such basic feasible solution corresponds to a unique spanning tree of
[m] ] [n].

We define a pivot operation from one basic feasible solution to another one as an operation on
the corresponding spanning trees. It can be found in any elementary textbook on operations research
(see e.g. [17]), though it is usually described in terms of the tabular representation of basic feasible
solutions. Consider any basic feasible solution Z with spanning tree TZ , and consider any edge
(a, b) 6∈ E(TZ). Then E(TZ) ∪ {(a, b)} contains a single unique simple cycle C. Since C is an even
cycle we can label its edges alternately + and −, giving (a, b) the label +. Let E+(C) and E−(C)
be the edges of C with label + and − respectively, and let (c, d) = argmin{Zi

j : (i, j) ∈ E−(C)}.
(if (c, d) is not unique, any choice will give a pivot). A pivot operation (on (a, b)) then consists
of increasing the value of all Zi

j for (i, j) ∈ E+(C) by Zc
d and decreasing the value of all Zi

j with
(i, j) ∈ E−(C) by Zc

d. Observe that in particular, the (a, b) cell of the new table now has the value Zc
d

(and becomes a basic variable), while the (c, d) cell obtains the value 0 (and becomes a non-basic
variable). The new spanning tree is then (TZ∪{(a, b)})\{(c, d)}. In the case where Zc

d is originally 0,
the only effect of the pivot operation is that Za

b becomes a basic variable instead of Zc
d. The vertex of

the polytope does not change in this case.
A pivot on any edge (a, b) satisfying (a, b) 6∈ E(TZ) corresponds to an edge of the edge-vertex

graph of the transportation polytope if and only if Zi
j > 0 for all (i, j) ∈ E−(C). Formulated in terms

of the vertices of the polytope this gives the following Lemma:

Lemma 4 Let Z be a vertex of P(r, c), and letFZ denote the forest on [m]][n] given by the non-zero
cells of Z (see Lemma 3). Let T 1

Z , . . . , T q+1
Z be the maximal trees constituting FZ . Let W be another

vertex of P(r, c) and let C = {(i, j) : Zi
j 6= W i

j}.
Then Z and W are joined by an edge of P(r, c) if and only if C is a simple cycle of the form

(i1, j1), p1, (i2, j2), . . . , (iκ, jκ), pκ

where cell Zik
jk

= 0 for every k ∈ [κ], where pk is a path in some T h
Z ∈ FZ from jk ∈ [n] to ik+1 ∈ [m]

for every k ∈ [κ] (identifying iκ+1 with i1), and where the T h
Z are all distinct.

Moreover, for every vertex Z of P(r, c), and every set of cells C of Z forming this type of cycle
in Z, there is exactly one vertex W in P(r, c) which is adjacent to Z such that {(i, j) : Zi

j 6= W i
j} = C.

2

Lemma 5 Any vertex of the polytope P(r, c) has at least (m − 1)(n − 1) and at most nm incident
edges.

Proof: We first prove the Lemma in the non-degenerate case.
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First consider any non-degenerate vertex Z ∈ P(r, c), corresponding to a spanning tree TZ in
[m] ] [n]. In this case, if we perform a pivot operation on any of the nm − n − m + 1 edges of
[m] ] [n] \ TZ (each of these is a non-basic variable), we create another vertex of P(r, c) adjacent to
Z. Each of these vertices is distinct. By Lemma 4 these are the only vertices adjacent to Z. Therefore
the Lemma holds in the non-degenerate case (with deg(Z) = (m− 1)(n− 1)).

Now consider a vertex Z ∈ P(r, c) of degeneracy q > 0. We first prove the lower bound.
Suppose the non-zero cells of Z correspond to a forestFZ with q+1 maximal trees T 1

Z , . . . , T q+1
Z .

We create two basic feasible solutions X and Y by extending FZ to spanning trees TX and TY of
[m] ] [n] as follows: For every 1 ≤ i ≤ q + 1, we arbitrarily fix ui

Z ∈ [m] ∩ T i
Z and vi

Z ∈ [n] ∩ T i
Z .

We then define TX and TY as follows:

TX = FZ ∪MX with MX = {(ui+1
Z , vi

Z) | i = 1, . . . , q},
TY = FZ ∪MY with MY = {(ui

Z , vi+1
Z ) | i = 1, . . . , q}.

Now consider TX and consider a pivot on any of the nm−m− n + 1 edges (u, v) ∈ [m] ] [n] \
E(TX). If u ∈ T i

Z and v ∈ T i
Z for some 1 ≤ i ≤ q+1, then there is a unique path pu,v between u and v

consisting entirely of edges of T i
Z (and of non-zero edges of TX ). Hence {(u, v)}∪pu,v forms a cycle

where all cells except (u, v) are strictly positive in Z. Therefore in this case the pivot corresponds
to an edge of the polytope, and performing the pivot operation creates a neighbouring vertex W with
W u

v > 0. Alternatively u ∈ T h
Z and v ∈ T k

Z for some h, k such that h 6= k. First assume that h < k. In
this case TX ∪ (u, v) contains a unique cycle CX(u, v) in which the only edges from E(TX) \E(FZ)
are the edges (uh

Z , vh+1
Z ), h = i, . . . , k − 1. Moreover, these are all in E+(CX(u, v)). Hence,

E−(CX(u, v)) \ E(FZ) = ∅, and therefore min{Zi
j : (i, j) ∈ E−(CX(u, v))} > 0. Therefore the

pivot on (u, v) corresponds to an edge of the polytope P(r, c), leading to a vertex W with W u
v > 0. In

particular this holds for the q edges (ui
Z , vi+1

Z ) ∈ MY (in which case k = h + 1), leading to a vertex
W which has a non-zero value for (ui

Z , vi+1
Z ) and (ui+1

Z , vi
Z), and which satisfies W u

v = 0 for all other
(u, v) ∈ [m] ] [n] \ E(FZ). Similarly, if u ∈ T h

Z and v ∈ T k
Z and h > k then TY ∪ (u, v) contains

a unique cycle. Then applying the pivot operation for (u, v) on the spanning tree TY generates a
neighbour vertex with W u

v > 0.
Now recall that E(TX) = E(FZ) ∪ E(MX) and E(TY ) = E(FZ) ∪ E(MY ). In total, there are

(m− 1)(n− 1) (zero)-cells in [m]× [n] \ E(TX). Define the following three subsets of [m]× [n]:

E1 = {(u, v) : (u, v) 6∈ TX , u, v ∈ T h
Z for some h.}

E2 = {(u, v) : (u, v) 6∈ TX , u ∈ T h
Z , v ∈ T k

Z , for some h, k such that h < k.}
E3 = {(u, v) : (u, v) 6∈ TY , u ∈ T h

Z , v ∈ T k
Z , for some h, k such that h > k.}

Observe that the sets E1, E2 and E3 are disjoint and |E1∪E2∪E3| = |E1∪E2∪E3∪MX ∪MY | =
(m − 1)(n − 1) + q (using MX ⊆ E3 and MY ⊆ E2). For i = 1, 2, let Vi be the neighbouring
vertices of Z that can be obtained by a pivot operation on TX for some cell in Ei. Let V3 be the
neighbouring vertices of Z obtained by a pivot operation on TY for some cell in E3. Recall that
for every (u, v) ∈ E1, the neighbour vertex of Z constructed by a pivot operation on (u, v) is unique
among all pivots on cells of E1 (no other pivot for (u, v) ∈ E1 induces a non-zero value for cell (u, v)).
Hence |V1| = |E1|. Moreover, (u, v) is the only zero-cell of Z which becomes positive as a result
of this pivot, hence V1 ∩ (V2 ∪ V3) = ∅. For every cell (u, v) ∈ E2, the pivot operation on (u, v)
with respect to the spanning tree TX constructs a neighbouring vertex to Z with a non-zero value
for (u, v). This is unique among all pivot operations on cells of E2, hence |V2| = |E2|. Similarly,
we know that |V3| = |E3|. We now show that |V2 ∪ V3| ≥ (m − 1)(n − 1) − |V1|. Suppose
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(u, v) ∈ E3 \MX . Then (u, v) 6∈ E(TX), and therefore the neighbour obtained by a pivot operation
on (u, v) with respect to TY is not an element of V2. Hence |V2 ∩ V3| ≤ |MX | = q. Therefore
|V1 ∪ V2 ∪ V3| ≥ |V1|+ |V2|+ |V3| − q = |E1|+ |E2|+ |E3| − q ≥ (m− 1)(n− 1), as required.

Next we prove the upper bound for the degenerate case.
Assume again that Z is a vertex of P(r, c) of degeneracy q ≥ 1, and the the non-zero cells of Z

correspond to the forestFZ on [m]][n], where we writeFZ = {T 1
Z , . . . , T q+1

Z }. For every h ∈ [q+1],
let Ih ⊆ [m] denote the set of source indices in T h

Z , and Jh ⊆ [n] denote the set of destination indices
in T h

Z ; {Ih : h ∈ [q + 1]} is a partition of [m] and {Jh : h ∈ [q + 1]} is a partition of [n]. Let
mk = |Ik| and nk = |Jk|, for k ∈ [q + 1].

By Lemma 4, a vertex W with W i
j 6= 0 is a neighbour of Z iff the differing edges of FZ and FW

form a simple cycle C = (i, j), p1, (i2, j2), p2, . . . , pκ such that

• The cells (i, j), (i2, j2), . . . (iκ, jκ) are the cells which are zero in Z and non-zero in W .

• For every k ∈ [κ], pk is a path of odd length from destination jk ∈ [n] to source ik+1 ∈ [m] in
some tree T k

Z ∈ FZ (assuming (i1, j1) = (i, j) and iκ+1 = i1).

• The T k
Z are all distinct trees of FZ .

Also by Lemma 4, there is exactly one neighbouring vertex W to Z for this cycle C. Each such
cycle is completely characterised by an ordered list of paths p1, . . . , pκ, where each path is from some
destination jk ∈ [n] to some source ik+1 ∈ [m] in some tree Tk ∈ F , and the Tk are distinct trees.
Two different ordered lists of paths only correspond to the same set of zero cells of Z if one ordered
list is a cyclic rotation of the other list.

Therefore the number of neighbouring vertices of Z can be expressed as the number of simple
cycles consisting of κ simple paths from κ different trees of FZ , summed over κ ∈ [q + 1]. If κ = 1,
the number of zero cells with both endpoints in a tree T k

Z ∈ FZ is (mk−1)× (nk−1). If κ > 1, then
we must count the cycles defined of κ simple paths from κ different trees of FZ . Hence the number
of vertices adjacent to Z is given by the following expression:

deg(Z) =
∑

S⊆[q+1],|S|≥2

(|S| − 1)!
∏
k∈S

mk × nk +
∑

k∈[q+1]

(mk − 1)× (nk − 1), (4)

which depends only on the values of mk and nk for k ∈ [q +1]. Let a pair of partitions (of size q +1)
be any two lists of numbers ~m = m1, . . . ,mq+1 and ~n = n1, . . . , nq+1 such that mk ≥ 1, nk ≥ 1
for all k ∈ [q + 1], and such that

∑q+1
k=1 mk = m and

∑q+1
k=1 nk = n. Thus, deg(Z) is a function of

(~mZ , ~nZ). We bound deg(Z) by bounding the maximum of the righthand side of (4) over all possible
pairs of partitions.

Observe that for any pair of partitions ~m,~n and any S ⊆ [q + 1],
∏

k∈S mknk ≤
∏

k∈[q+1] mknk.
Also for any value κ < q + 1, there are exactly

(
q+1
κ

)
sets S ⊆ [q + 1] such that |S| = κ. Therefore
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by (4),

deg(~m,~n) ≤
q+1∑
κ=1

(κ− 1)!
∑

S⊆[q+1],|S|=κ

∏
k∈[q+1]

mknk

=
q+1∑
κ=1

((q + 1) · . . . · (q − κ + 2))/κ
∏

k∈[q+1]

mknk

≤ (q + 1)q+1(
∏

k∈[q+1]

mk)(
∏

k∈[q+1]

nk)

≤ (q + 1)q+1(
m

q + 1
)q+1(

n

q + 1
)q+1 = mq+1nq+1/(q + 1)q+1.

For every m ≥ 2 (always the case in the context of transportation polytopes) and every 1 ≤ q+1 ≤ m,
mq+1nq+1/(q + 1)q+1 ≤ nm: the case for q + 1 ≤ m/2 follows from the fact that if q + 1 ≤ m/2,
then mq+1nq+1/(q + 1)q+1 ≤ mq+1nq+1 ≤ n2(q+1) ≤ nm; the case for q + 1 = m is simple to
check; and the case for m/2 ≤ q + 1 ≤ m − 1 follows by (m/(q + 1))q+1nq+1 = (1 + (m − q −
1)/(q + 1))q+1nq+1 = ((1 + (m− q − 1)/(q + 1))(q+1)/(m−q−1))m−q−1nq+1 < em−q−1nq+1. This
value is at most mm−q−1nq+1 ≤ nm if m ≥ 3, and if m = 2, we can check correctness directly. 2

4 The heat-bath chain

We now define our auxiliary “heat-bath” Markov chain MHB, which operates on a m × bm-sized
window of the matrix representing the current vertex Z, where bm = 47m2. Define ΓZ to be the
subset of columns of Z defined as:

ΓZ = {j : Zj has more than one non-zero}.

Then |ΓZ | ≤ m− 1.

Definition 6 Let P(r, c) be the transportation polytope, V a vertex of P(r, c). Starting from Z, a
single step of MHB is performed as follows: a set of columns B ⊆ [n], with |B| = bm, is chosen
uniformly at random from the columns of the matrix representing Z, subject to ΓZ ⊆ B. Then Z is
replaced by a vertex W chosen uniformly at random from all vertices which can be obtained from Z
by modifying only the columns Zj (j ∈ B).

The number of columns bm that we use in a move ofMHB is closely-related to the “balance” constant
of the balanced almost-uniform permutations that we are able to construct for vertices of the TP
(see §5). We will see that the value of bm is substantially better (smaller) that what is known for
m-rowed contingency tables (or m-dimensional knapsack solutions).

TheMHB chain is ergodic because it includes all moves ofW . To see this we only need to observe
that by Lemma 4, any pair of vertices which are connected by an edge in P(r, c) can differ in at most m
columns (of the matrix representation of the vertices). Clearly bm ≥ m. ThereforeMHB is ergodic
and converges to a stationary distribution $ on Ω. By definition, PrMHB

[Z,W ] = PrMHB
[W,Z] for

any two vertices Z,W . Therefore the stationary distribution $ must be the uniform distribution on Ω.
To show rapid mixing of MHB in §6, we will use the multicommodity flow approach of Sin-

clair [30] (see also Diaconis and Stroock [10]), together with a construction based on ideas of Morris
and Sinclair [25] which we develop in §5 below. Some definitions are necessary at this point.
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For any ergodic Markov chainM on state space Ω, a multicommodity flow can be defined on the
underlying graph G(M) of the chainM. The vertex set of G(M) is Ω, and there is an edge (u→ v)
for every pair of states such that PrM[u, v] > 0 in M (observe that for our original chain W , this
“underlying graph” of the chain is exactly G(W)). For x, y ∈ Ω, a unit flow from x to y is a set Px,y

of simple directed paths in G(M) from x to y, such that each path p ∈ Px,y has positive weight αp,
and the sum of the αp over all p ∈ Px,y is 1. A multicommodity flow is a family of unit flows
F = {Px,y : x, y ∈ Ω} containing a unit flow for every pair of states from Ω. The length L(F) of the
multi-commodity flow F is L(F) = maxx,y max{|p| : p ∈ Px,y}, where |p| denotes the number of
edges of p. For any edge e of G(M), we define F(e) to be the sum of the αp weights over all p such
that e ∈ p and p ∈ Px,y for some x, y ∈ Ω. Then the following theorem holds:

Theorem 7 (Sinclair [30]) Let P be the transition matrix of an ergodic, reversible Markov chainM
on Ω whose stationary distribution is the uniform distribution. Let F be a multicommodity flow on the
graph G(M). Then the mixing time of the chain is bounded above by

τ(ε) ≤ 2|Ω|−1L(F) max
e

F(e)
PrM[e]

(ln |Ω|+ ln ε−1) 2

Our analysis of the mixing time will be performed in two steps: first we will prove that our auxil-
iary Markov chainMHB mixes rapidly using the multi-commodity flow technique, and then we will
use comparison to prove rapid mixing of the random walkW . This approach is similar to the analysis
of Cryan et al.[3] for m-rowed contingency tables. The analysis for m-rowed contingency tables is
also carried out using an auxiliary heat-bath chain similar to MHB: this contingency tables chain
chooses b′m columns of the table uniformly at random, calculating the induced row sums on those
columns, and then replacing those columns by a random subtable with those column sums and those
induced table sums. The value of b′m in [3] arises from the multi-dimensional balanced permutations
of Morris and Sinclair [25], and the best upper bound we can identify is b′m = O(m4m). Morris and
Sinclair [25] also apply the multicommodity flow technique to their work on m-dimensional knap-
sack, though they work directly with their natural Markov chain, and do not require comparison (or
an auxiliary Markov chain).

In order to construct a multicommodity flow on the graph G(MHB), we follow the example of
Morris and Sinclair [24, 25] for multidimensional knapsack and of Cryan et al. [3] for contingency
tables and think of defining a path from a vertex X to a vertex Y by changing the value of a single
column j (of the matrix representing the current vertex) from Xj to Yj at each step. The procedure
of changing columns of X to columns of Y will not ensure that the points along the path are vertices
of P(r, c), or even that they lie inside P(r, c). However, in §6 we will show that if we define the path
appropriately (using balanced almost-uniform permutations), each interim point on our path can be
transformed to a vertex of P(r, c) by changing the values of a constant, but large, number of columns.
This is why we originally analyse the heat-bath chain, which can modify bm columns in one step.

To spread out the flow from X to Y , we will use a random permutation σ of the columns of the
vertex, to determine the (random) order in which we change the columns of the vertex. We will spread
flow along a particular path according to the probability with which a particular permutation of the
columns is generated. Before we construct the particular (random) permutation which we will use to
define the multicommodity flow forMHB, we list some relevant definitions from the work of Morris
and Sinclair [25, 24]. One of the properties that we will require of our random permutation is that it
should approximate the uniform permutation in the following way:

Definition 8 (Morris & Sinclair[25]) Let σ be a random permutation on [n]. Let λ ∈ R be such that
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λ > 0. We say that σ is λ-uniform if for every k ∈ [n] and every U ⊆ [n] with |U | = k,

Pr[σ{1, . . . , k} = U ] ≤ λ ·
(

n

k

)−1

.

The second property that will be important for our random permutation is that of balance:

Definition 9 (Morris & Sinclair[25]) Let w1, . . . , wn be real m-dimensional weights (columns) with
the mean µ ∈ Rm. Let W =

∑n
j=1 wj . We say that a permutation σ on the set of columns is

`-balanced for some ` ∈ R, ` ≥ 1, if for every k ∈ [n], and for every i ∈ [m],∣∣∣∣∣∣
∑
j∈[k]

wi
σ(j) − kµi

∣∣∣∣∣∣ ≤ `max
j∈[n]
|wi

j − µi|.

This in turn implies the following:

min{W i, 0} − 2`max
j
|wi

j | ≤
k∑

j=1

wi
σ(j) ≤ max{W i, 0}+ 2`max

j
|wi

j |.

A variant of balance is strong balance:

Definition 10 (Morris & Sinclair[25]) Let w1, . . . , wn ∈ Rm and let µ ∈ Rm be the mean of these
weights. A permutation σ is strongly `-balanced for ` ∈ R, if for every k ∈ [n], and for every i ∈ [m],
there is some set S ⊆ [n] with |S ⊕ σ{1, . . . , k}| ≤ ` such that the following two quantities have
different signs (or either is 0):

k∑
j=1

wi
π(j) − kµi

∑
j∈S

wi
j − kµi

In the work of Morris & Sinclair [25, 24], an explicit distinction is made between `-balance and
strong `-balance. This distinction is highlighted because strong `-balance is a constructive property,
which allows the sign of

∑k
j=1 wi

j−kµi to be altered by adding or deleting a fixed number of weights.
We will see in Lemma 12 that in the case of one-dimensional weights, we can always convert a 0-
balanced λ-uniform permutation into a strongly-balanced almost-uniform permutation, at the cost of
making some constants worse. We will then construct a strongly-balanced almost-uniform permuta-
tion σ for the m-dimensional weights which appear in the vertices of the transportation polytope, by
interleaving m(m− 1)/2 of these strongly balanced one-dimensional permutations.

We conclude this section with some intuition of why (and how) strongly balanced almost-uniform
permutations can be used to construct a multi-commodity flow with good congestion forMHB. The
details of this argument appear in §6. Suppose that we have a gm-strongly-balanced pm(n)-uniform
permutation σ available for the vertices of TP. We construct a multi-commodity flow between X and Y
by first applying σ to the multi-dimensional weights {wj}j∈L for L = {j : Xj 6= Yj , j 6∈ ΓX ∪ ΓY }.
This defines a “virtual path” Z(0) = X, Z(1), Z(2), . . . , Z(k) = Y of tables where for each 0 ≤
j ≤ k, the columns j ∈ σ{1, . . . , j} are set to Yj and the columns j ∈ [n] \ σ{1, . . . , j} are taken
to be Xj . Although the Z(j) tables are not vertices of the TP, the strong-balance condition ensures
that we can complete each Z(j) to a vertex Z(j)′ by changing only gm + 2(m− 1) columns of Z(j).
The gm comes from using the strong-balance property to bring all row sums of Z(j) below ri, and
the 2(m − 1) is due to the fact that we may need to use the columns in ΓX ,ΓY to ensure Z(j)′ is
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a vertex (rather than just a contingency table) of the transportation polytope. In order to ensure that
the adjacent Z(j)′ vertices are connected by moves of the Markov chain, the heat-bath chain is then
defined using 2gm + 2(m − 1) + 1 columns of the vertex (this is why bm inMHB depends on the
balance constant of the random permutations we construct in §5). The pm(·)-uniform property of σ
ensures that the unit flow will be well-distributed among the various balanced-permutations. Once the
paths are defined, we use Theorem 7 to bound the mixing time of the chain. We will see in §6 that when
we do this analysis, we get an upper bound on mixing time of the form O(nO(gm) · pm(n)). This is
similar to the analysis of the contingency tables chain in [3]. For m-rowed contingency tables, where
the columns have a more general structure than the TP vertices, we only have balanced permutations
with gm = O(m4m), and therefore the bound on mixing time depends on n2O(m)

. This is also the case
for Morris and Sinclair’s bound on mixing for the multi-dimensional knapsack, where the balanced
permutations for general m-dimensional weights were constructed [25].

In §5 we will construct the balanced permutations which we will use to define a multicommodity
flow on the graph G(MHB). In §6 we will prove that our construction does not overload any edge of
the graph, and then prove thatMHB mixes rapidly. Finally, in §7, we apply a comparison technique
of Diaconis and Stroock [10] to extend our analysis to the random walkW .

5 Balanced permutations

Let X and Y be any two vertices of P(r, c), so |ΓX ∪ ΓY | ≤ 2(m− 1).
Let Γ = {j : Xj = Yj}, L = [n] \ (ΓX ∪ ΓY ∪ Γ), and ` = |L|.
In Lemma 14 we will construct a permutation σ on the m-dimensional columns of X − Y for the

indices in L. Lemma 14 builds on the work of Morris and Sinclair [25, 24]. Our construction will rely
on the fact that each of the columns to be permuted will only contain two non-zero entries, as seen
below.

For j ∈ L, define the “weight vectors” wj = Yj − Xj ∈ Rm, and let µ =
∑

j∈L wj/` with
coordinates µi (i ∈ [m]). By definition, for all j ∈ L, we know that both Xj and Yj have exactly one
non-zero and it is equal to cj . Thus each wj (j ∈ L) contains exactly two non-zeros, and these are
of equal modulus but opposite sign. We partition L according to the location of these two non-zeros.
For each pair of rows i 6= i′, define

Si,i′ = Si′,i =
{
j ∈ L : {wi

j , w
i′
j } = {−cj ,+cj}

}
,

Let `i,i′ = |Si,i′ |, and let µi,i′ =
∑

j∈Si,i′
wi

j/`i,i′ be the mean over Si,i′ of the weights in row i. Note
that µi,i′ = −µi′,i for all i, i′ ∈ [m].

We will use results of Morris and Sinclair [24, 25] to help us define a suitable random permuta-
tion σi,i′ on each of the Si,i′ sets. The first lemma that we need is:

Lemma 11 (Morris [24]) Suppose we are given real weights {wj}hj=1 with total W =
∑h

j=1 wj . Let
M = maxh

j=1 |wj |. Suppose that |W | ≥ 21M . Then there is a random permutation π1 of [h], and
some universal constant C > 1, such that for every 1 ≤ k ≤ h, the following two conditions hold:

(i) min{0,W} ≤
∑k

j=1 wπ1(j) ≤ max{W, 0};

(ii) for every U ⊆ [h] with |U | = k, Pr[π1{1, . . . , k} = U ] ≤ Ch2
(
h
k

)−1
.

We say π1 is a 0-balanced Ch2-uniform permutation. 2
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From this we will deduce a statement more convenient for our application (cf Morris [24, Ch. 3]).

Lemma 12 Let {wj}hj=1 be a set of real numbers with mean µ =
∑h

j=1 wj/h. Let C be the constant
from Lemma 11. Then there exists a random permutation π of [h] such that, for each 1 ≤ k ≤ h, both
of the following properties hold:

(I) there are sets D1, D2 ⊆ [h] with |D1|, |D2| ≤ 42 such that∑
j∈[k]⊕D1

wπ(j) ≤ kµ,
∑

j∈[k]⊕D2

wπ(j) ≥ kµ.

(II) for every U ⊆ [h] with |U | = k, Pr[π{1, . . . , k} = U ] ≤ Ch23
(
h
k

)−1
.

We call π a strongly 42-balanced Ch23-uniform permutation.

Proof: Assume, by symmetry, that µ ≥ 0. We first show how to construct the permutation π so that
property (I) is satisfied.
(I) If h ≤ 42 we will let π be a random permutation of [h]. Let D1 = [k] and D2 = [h] \ [k]. Clearly
property (I) is satisfied.

Otherwise h > 42. Let Q1 contain the indices of the 21 elements for which (wj − µ) is greatest
and Q2 contain the indices of the 21 elements for which (wj−µ) is smallest. There are two subcases:

(a) The first case is when −
∑

j∈Q2
(wj − µ) ≥

∑
j∈Q1

(wj − µ). In this case we assume wlog
that the indices of Q2 are the indices [h− 20, h], and we let π be the identity permutation on these 21
elements (the weights wj for j ∈ Q2 will be the last 21 elements of our permutation).

We will apply Lemma 11 to the set of weights {wj−µ}j∈[h]\Q2
to construct our permutation π on

the {wj}j∈[h]\Q2
weights. Note that W =

∑
j∈[h]\Q2

(wj −µ) = −
∑

j∈Q2
(wj −µ) ≥

∑
j∈Q1

(wj −
µ). Also note that we are guaranteed that W ≥ 0. For every j ∈ [h]\(Q1∪Q2), we have 21|wj−µ| ≤
W . For now, assume that 21|wj − µ| ≤ W for j ∈ Q1, so that we have W ≥ 21M , where
M = maxj∈[h]\Q2

|wj − µ|. (We will show how to remove this assumption below).
We have already constructed π for j ∈ Q2. Let π be the permutation π1 of Lemma 11 on the

weights {wj − µ} for j ∈ [h] \ Q2 = [h − 21]. If k ≤ 21, take D1 = [k], D2 = ∅. Observe that
property (I) is satisfied. If 21 < k ≤ h− 21, property (i) of π1 gives

0 ≤
k∑

j=1

(wπ(j) − µ) ≤
h−21∑
j=1

(wπ(j) − µ)

= −
h∑

j=h−20

(wπ(j) − µ).

We immediately have
∑k

j=1 wπ(j) ≥ kµ, so we can take D2 = ∅. Also, since the above inequalities
are true for all k ≤ h− 21, we have

k−21∑
j=1

(wπ(j) − µ) +
h∑

j=h−20

(wπ(j) − µ) ≤ 0.

Then, setting D1 = [k − 20, k] ∪ [h − 20, h], we have
∑

j∈[k]⊕D1
wπ(j) ≤ kµ. Observe that in this

case we also have property (I).
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If k > h− 21, the conclusion follows easily from

h−21∑
j=1

(wπ(j) − µ) ≥ 0,

h∑
j=1

(wπ(j) − µ) = 0.

Note that in all the cases above, in fact we have |D1 ∪D2| ≤ 21, except for D1 when 21 < k ≤
h−21 (then |D1| ≤ 42). We now show how to deal with the possibility that there is some j ∈ Q1 such
that 21|wj−µ| > W . When we construct the permutation π1, we replace the weights {wj−µ}j∈Q1 by
{w′

j−µ}j∈Q1 , where w′
j =

∑
j∈Q1

wj/21 for all j ∈ Q1. Then W does not change and the condition
21M ≤W is satisfied. When π1 has been constructed we replace the dummy weights by the original
weights in random order. Then we need to exchange at most 11 weights (exchanging some elements
of Q1 for others) to obtain D1, D2 sets satisfying condition (I) for the original weights. Moreover, for
21 < k ≤ h− 21, we can define D1 = [h− 20, h] ∪ (Q1 ∩ [k]) ∪ [k − 20 + |{j : j ∈ Q1 ∩ [k]}|, k]
to ensure (I) holds. Therefore we still have |D1|, |D2| ≤ 42, as claimed.

(b) The second case occurs if −
∑

j∈Q2
(wj − µ) <

∑
j∈Q1

(wj − µ). In this case we assume
wlog that the set of indices Q1 is the set [h − 20, h], and we let π on [h − 20, h] be the identity
permutation. Then, when we apply Lemma 11 to the set of weights {wj − µ}j∈[h]\Q1

, the total of the
weights W is negative. Again, assuming for now that |W | ≥ 21 maxj∈[h]\Q1

|wj−µ|, we let π be the
permutation π1 of Lemma 11 on [h− 21].

For k ≤ 21, we take D1 = ∅ and D2 = [h − 20, h]. For 21 < k ≤ h − 21, we use the fact
that condition (i) of Lemma 11 holds for k− 21 in a similar way to that described above, and we take
D1 = ∅ and D2 = [k − 20, k] ∪ [h − 20, h]. The case k > h − 21 is similar to case (a). Finally, we
treat the possibility that there exists j ∈ Q2 with 21|wj − µ| > |W | in a similar way to case (a).
(II) We now show that property (II) holds for π. If h ≤ 42, the property follows from the fact that π is
a random permutation. Otherwise, if k ≤ 21 or k > h− 21, the statement is trivially true. In all other
cases, property (II) of π1 implies Pr[π{1, . . . , k} = U ] ≤ C(h− 21)2

(
h−21

k

)−1 ≤ Ch23
(
h
k

)−1
. 2

We remark that it would be possible to improve the constants in Lemma 12 by proving it directly,
rather than starting from Lemma 11. Moreover, even without doing this, there are many improvements
we could make if we were slightly more careful with the constants in our proofs (for example, in
Lemma 12, for every k, we have D1 = ∅ or D2 = ∅, even though we never use this fact). However,
we are not aiming to optimize the constants, so we have not made use of these observations.

We apply the construction of Lemma 12 to each of the non-empty sets Si,i′ separately to produce
permutations σi,i′ . Since the entries in rows i, i′ are equal and opposite, for any J ⊆ Si,i′ , we have∑

j∈J wi
j = −

∑
j∈J wi′

j . Hence
∑

j∈J wi
j ≥ kµi,i′ iff

∑
j∈J wi′

j ≤ kµi′,i. Therefore, by Lemma 12,
we only need to make 42 corrections in one of the rows i, i′ in order to bring both inequalities in
the same direction. This will be useful in our analysis of the balance properties of σ, which we now
define.

We now give the algorithm we will use to interleave the σi,i′ to produce an overall permutation
σ of L. For notational simplicity, suppose we are interleaving q permutations ω1, . . . , ωq of lengths
νi > 0, i ∈ [q], with ν =

∑q
i=1 νi. Let αi = νi/ν, so

∑q
i=1 αi = 1. We construct an overall

interleaved permutation ω with the following algorithm.

interleave(ω1, . . . , ωq)
k1, k2, . . . , kq ← 0.
while k =

∑q
i=1 ki < ν do

Let i∗ = arg maxq
i=1(αik − ki)
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Set ki∗ ← ki∗ + 1.
The k + 1-th element of ω is defined to be the ki∗-th element of ωi∗ .

od

We now prove some useful properties of interleave.

Lemma 13 For all k ∈ [0, ν], ki ≤ dαike ≤ νi, i ∈ [q], and
∑q

i=1 |ki − αik| < 2(q − 1).

Proof: First note that dαike ≤ νi. Otherwise dαike = dνik/νe > νi, giving k > ν, a contradiction.
Let γi(k) = αik − ki. Note that

∑q
i=1 γi(k) = 0, so γi∗(k) ≥ 0. Then γi(k + 1) = γi(k) +

αi > γi(k) (i 6= i∗), but γi∗(k + 1) = γi∗(k) − (1 − αi∗) > −1. Since γi(0) = 0 for all i, it
follows by induction that γi(k) > −1 for all i, k. Now ki ≤ dαike follows immediately. Also, since∑q

i=1 γi(k) = 0 and γi∗(k) ≥ 0,

q∑
i=1

|ki − αik| =
q∑

i=1

|γi(k)| = 2
∑
γi<0

|γi(k)|

This is at most 2
∑

i6=i∗ 1 = 2(q − 1). 2

We interleave the σi,i′ according to the procedure above to produce the permutation σ. The following
Lemma proves that σ is a strongly 23m2-balanced Cm`14m2

-uniform permutation. The qm-balanced
pm-uniform permutations of [24, 25] for a set of ` general m-dimensional weights only have bounds
of the form qm ∈ 2O(m) and pm ∈ `O(m2). Therefore by exploiting the special structure of the vertices
of the transportation polytope, we are able to prove better bounds on our “balance” constant. This will
positively influence the asymptotic bounds that we prove on the mixing time ofMHB in §6.

Lemma 14 For every m, there is some constant Cm such that σ has the following properties.

(i) For all i ∈ [m], k ∈ [`], there exist two sets Di
1, D

i
2 ⊆ ∪i′ 6=iSi,i′ ⊆ [n] satisfying |

⋃m
i=1 Di

1| <
23m2, |

⋃m
i=1 Di

2| < 23m2 such that∑
j∈[k]⊕Di

1

wi
σ(j) ≤ kµi,

∑
j∈[k]⊕Di

2

wi
σ(j) ≥ kµi.

(ii) For any U ⊆ [`] with |U | = k, Pr[σ{1, . . . , k} = U ] ≤ Cm`14m2(`
k

)−1
.

Proof: (i): We prove only the first inequality, the other being entirely similar. Recall that for every
pair of rows i 6= i′, `i,i′ = |Si,i′ | and µi,i′ =

∑
j∈Si,i′

wi
j/`i,i′ . Suppose the values at step k in

interleave are ki,i′ , and αi,i′ = `i,i′/`, for each i′ 6= i. Define k∗i,i′ to be bkαi,i′c if µi,i′ ≥ 0, and
dkαi,i′e otherwise. Using Lemma 13, observe that

∑
i,i′ |k∗i,i′ − ki,i′ | is at most∑

i,i′

(
|k∗i,i′ − kαi,i′ |+ |ki,i′ − kαi,i′ |

)
which is less than

(
m
2

)
+ 2

(
m
2

)
= 3

(
m
2

)
.

Let Di,i′

1 be the set associated with σi,i′ , k∗i,i′ such that
∑

j∈[k∗
i,i′ ]⊕Di,i′

1

wσi,i′ (j)
≤ k∗i,i′ µi,i′ , and let

Ii,i′

1 be the interval [k∗i,i′ + 1, ki,i′ ], if k∗i,i′ < ki,i′ , or [ki,i′ + 1, k∗i,i′ ] otherwise. Let Di
1 =

⋃
i′(D

i,i′

1 ∪
Ii,i′

1 ). Then, using Lemma 12, |
⋃m

i=1 Di
1| < 42

(
m
2

)
+ 3

(
m
2

)
< 45m2/2.
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Also ∑
j∈[k]⊕Di

2

wi
σ(j) ≤

∑
i′

k∗i,i′ µi,i′

≤
∑
i′

k `i,i′ µi,i′/` = kµi.

(ii): For every pair of rows i 6= i′, let τi,i′ be the uniform distribution on permutations of Si,i′ (the
uniform random permutation on Si,i′). We define a random permutation τ∗ on permutations on [`], by
choosing a permutation on each Si,i′ according to τi,i′ for each pair i 6= i′, and then applying interleave
to this collection of permutations. Let τ represent the uniform distribution on [`]. We will first bound
Pr[τ∗{1, . . . , k} = U ] in terms of Pr[τ{1, . . . , k} = U ] (=

(
`
k

)
), and then use the almost-uniformity

of the σi,i′ (ie, compare the τi,i′ to the σi,i′) to give the result.
Let Ki,i′ be a random variable equal to the number of elements of Si,i′ in the prefix τ{1, . . . , k}.

We will show that with high probability Ki,i′ is not too far from αi,i′k. Precisely, we have

Prτ

[
|Ki,i′ − αi,i′k| ≥

√
k ln(`)

]
≤ 2e

−2k(ln `)
k

= 2`−2

by a single application of the Chernoff bound (see McDiarmid [22]). Summing over all k and all i, i′

(
(
m
2

)
in total), we find that under the uniform distribution τ ,

|Ki,i′ − αi,i′k| ≤
√

k ln(`) (5)

holds for all k, and all i, i′ with probability at least 1 −m(m − 1)/`. Assume wlog that ` ≥ 14m2,
therefore (5) holds with probability at least 1/2.

Let τ ′ be the uniform distribution on the permutations that satisfy (5) (for all k, all i, i′). Note the
probability of any event in τ ′ is at most twice its probability in the uniform distribution τ . Also, since
the integer variable Ki,i′ has maximum probability of taking values {bαi,i′kc, dαi,i′ke}, we have

(a) Prτ ′ [Ki,i′ = qi,i′ ] ≥ (
√

k ln `)−1 for qi,i′ ∈ {bαi,i′kc, dαi,i′ke}

Now we are ready to bound Pr[σ∗{1, . . . , k} = U ], where U decomposes into Ui,i′ with |Ui,i′ | = ki,i′ .
We only need the following (with the binomial coefficient defined (by continuation) for non-integer
arguments):

(b)
(

`i,i′

αi,i′k

)
≤ `|ki,i′−αi,i′k|+1

(
`i,i′

ki,i′

)
Using (a) and (b) with an application of Lemma 13, we find that Prτ [Ki,i′ = ki,i′ ∀i, i′] is

≥ (k ln `)−m2/4(
∏
i,i′

`−|ki,i′−αi,i′k|−1)/2

≥ `−m2/2`−3m2/2/2 ≥ `−2m2
/2

So Pr[σ∗{1, . . . , k} = U ] ≤ 2`2m2(`
k

)−1
. Then applying Lemma 11 to each of the Si,i′ , we have

Pr[σ{1, . . . , k} = U ] ≤ 2`2m2
Cm2

`23m2/2

(
`

k

)−1

and we have Cm`14m2
-uniformity. 2
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6 Analysis of the heat bath

We now apply Theorem 7 to prove thatMHB is rapidly mixing.
In a similar manner to [3] (see also [25]), we use the permutation σ constructed by interleave to

route flow from X to Y . We apply σ to the columns in L and for every k ∈ [`], we define the matrix
Z(k) as the m× n matrix where we set

Z(k)j =
{

Yj j ∈ σ{1, . . . , k}
Xj j ∈ σ{k + 1, . . . , `} ∪ ([n] \ L)

Conceptually, we think of the sequence of matrices X = Z(0), Z(1), . . . , Z(k), . . . , Z(`), as defining
a random path from X to Y in G(MHB), along which we assign some fraction of flow determined
by σ. However, if Z(k) is any intermediate matrix obtained in this way, in general it will not be a
vertex of P(r, c) (or even a point inside P(r, c)). We will presently show how to modify the Z(k)
matrices to obtain Z(k)′ matrices which are vertices of P(r, c). For every k ∈ [`], we also define a
mirror image Z̄(k) of Z(k), called an “encoding”, in the following way:

Z̄(k)j =
{

Xj j ∈ σ{1, . . . , k}
Yj j ∈ σ{k + 1, . . . , `} ∪ ([n] \ L)

This matrix Z̄(k) is not used in constructing the multicommodity flow forMHB, but is a useful con-
cept when we come to bound the amount of multicommodity flow that can lie on an edge of G(MHB).
The Z̄(k) matrices do not necessarily correspond to vertices of P(r, c). We now show that if we delete
only a constant number of columns from either Z(k) or Z̄(k), then the matrix can be completed to a
vertex of P(r, c), denoted by Z ′(k) and Z̄ ′(k) respectively. Moreover, both X and Y can be recon-
structed from Z ′(k) and Z̄ ′(k) using a suitably small amount of information.

Let r′i = ri −
∑

j∈Γ Xi
j = ri −

∑
j∈Γ Y i

j for i ∈ [m].
Let D1 =

⋃m
i=1 Di

1 and D2 =
⋃m

i=1 Di
2. Since Xi

j , Y
i
j ≥ 0 for all i, j, for each i ∈ [m] we have∑

j∈(L\[k])\D1

Xi
σ(j) +

∑
j∈[k]\D1

Y i
σ(j) ≤∑

j∈L\([k]⊕Di
1)

Xi
σ(j) +

∑
j∈[k]⊕Di

1

Y i
σ(j) =

∑
j∈L

Xi
j +

∑
j∈[k]⊕Di

1

wi
σ(j).

By Lemma 14, we also have∑
j∈L

Xi
j +

∑
j∈[k]⊕Di

1

wi
σ(j) ≤

∑
j∈L

Xi
j + kµi

= `−k
`

∑
j∈L

Xi
j + k

`

∑
j∈L

Y i
j

which is at most r′i, as defined in §5.
Hence, if we “delete” the columns in D1 ∪ ΓX ∪ ΓY , we obtain partial row sums for the deleted

columns, where each partial row sum has size at least ri − r′i, which is non-negative for every i. Thus
Z(k) can be completed to a vertex of P(r, c) by redefining the columns of D1 ∪ ΓX ∪ ΓY according
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to the “northwestern corner rule” [16]. Hence we can map Z(k), for every k ∈ [`], to a vertex Z(k)′

of P(r, c). This necessitates changing the values of some of the columns in D1 ∪ ΓX ∪ ΓY . By
Lemma 14, |D1| ≤ 23m2, hence Z(k)′ may differ from Z(k) in at most 23m2 + 2(m− 1) columns
in total, for any k ∈ [`]. Recall that for every k ∈ [` − 1], Z(k) and Z(k + 1) differ in one column.
Hence Z(k)′ and Z(k + 1)′ differ in at most 46m2 + 2(m − 1) + 1 columns, which for m ≥ 2 is at
most 47m2. So Z(k)′ → Z(k + 1)′ is a transition ofMHB for every k ∈ [` − 1] (this justifies our
choice of bm in §4). Also X → Z(0)′ and Z(`)′ → Y are transitions ofMHB. Hence we obtain a path
X = Z(0), Z(1)′, . . . , Z(`)′, Y in G(MHB) between X and Y . The proof for Z̄(k) is identical, by
interchanging Xi

j with Y i
j , wi

j with −wi
j , D1 with D2, and using the lower bound in (i) of Lemma 14.

Now suppose we are given Z ′(k), Z̄ ′(k) and we wish to recover X , Y . Let us assume, using
the uniformity property of σ, that we are given U = σ{1, . . . , k} (we will incorporate this into our
analysis later). We still need to know the “deleted” columns D1, D2, ΓX , ΓY , but there are at most(

n
23m2

)2( n
m−1

)2
< n47m2

ways of selecting these sets. We can easily reconstruct both X and Y except
for the deleted columns. However, there are at most 47m2 such columns, and X and Y are both
vertices. Moreover, since the deleted columns are the only columns which may contain more than
one non-zero cell, therefore we can complete X to a vertex iff the values we choose for the deleted
columns D1 ∪ ΓX ∪ ΓY define a vertex on the induced transportation polytope (of dimension at
most (m − 1)(24m2 − 1)) on the deleted columns. By Lemma 3, there are at most (em)24m2+m−1

possible ways of completing these columns for X . Similarly, there are at most (em)24m2+m−1 ways
of completing the deleted columns D2 ∪ ΓX ∪ ΓY for Y . So there are at most (em)49m2

n47m2
ways

of augmenting the encoding so that we can uniquely identify X and Y from Z ′(k), Z̄ ′(k) (assuming
we have been given U = σ{1, . . . , k}).

We can now bound the flow through any state Z ∈ Ω. There are |Ω| ways of choosing Z̄,
(
n
k

)
ways of choosing |U | and (em)49m2

n47m2
ways of specifying the additional information needed to

uniquely identify X and Y . However, by the uniformity of σ, Pr(σ[k] = U) ≤ Cmn14m2(n
k

)−1.
Hence the flow through any state may be bounded by

|Ω| ×
(
n
k

)
× (em)49m2

n47m2 × Cmn14m2(n
k

)−1 = (6)

O(n61m2
)|Ω|. (7)

Observe that in this analysis of the maximum flow through any state of Ω, we have obtained a term
n47m2

which derives from the constant 23m2 of the strongly 23m2-balanced Cm`14m2
-uniform per-

mutation σ. If we had used the permutations of Morris & Sinclair[24, 25] for general m-dimensional
weights (which are strongly 2O(m)-balanced), we would have obtained a n2O(m)

term instead. This
was our motivation for exploiting the structure of the vertices to obtain an improved strongly-balanced
almost-uniform permutation in §5.

In order to apply Theorem 7, we must bound the flow through any edge of G(MHB). We observe
that for the flow F which we have constructed, for any edge e = (Z,W ), (7) implies:

F(e) ≤ O(n61m2
).

By construction of our multi-commodity flow, L(F) ≤ n. Therefore, by Theorem 7,

τMHB
(ε) ≤ 2|Ω|−1 · n ·max

e

{
O(n61m2

)|Ω|
PrMHB

[e]

}
(ln |Ω|+ ln ε−1) (8)

= O(n61m2+1) · (min
e

PrMHB
[e])−1(ln |Ω|+ ln ε−1). (9)
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Now observe that e = (Z →W ) is an edge of G(MHB) if and only if Z and W are vertices of P(r, c)
and there is some set B of destinations such that ΓZ ⊆ B, |B| ≤ bm and Z and W only differ on
the set B. The definition ofMHB implies that this particular set of destinations B is chosen from B

with probability at least
(

n
bm

)−1. Also, by definition ofMHB, once the window B has been chosen,
we choose the next state uniformly at random, by choosing from all possible assignments to B which
give a vertex of P(r, c). It is not difficult to show that this is the case if and only if the assignment to
the destinations of B is a vertex of the (m− 1)× (bm − 1)-dimensional polytope P(s, d) induced by
the set of values of Zj for the destinations j ∈ B (see, for example, Hadley [16]). By Lemma 3 there
are at most (e ·m)bm+m−1 vertices of this smaller polytope. Therefore we can bound the probability
of a transition from Z to any W inMHB as follows:

PrMHB
[Z,W ] ≥

(
n

bm

)−1

(em)−bm−m+1.

Therefore, substituting into (9), we have the following bound on the mixing time ofMHB:

τMHB
(ε) = O(nbm+61m2+1)(ln |Ω|+ ln ε−1) = O(n109m2

) ln ε−1, (10)

where in the last step, we use the facts that
(

n
bm

)
≤ nbm = n47m2

and |Ω| ≤ (em)n+m−1.

Remark: In the conference version of this paper [4], we omitted the PrMHB
[Z,W ] term when

bounding τMHB
. Hence we erroneously claimed a bound of O(n62m2

) ln ε−1 for the mixing time
of MHB. However, because we are able to define bm = 47m2 in this paper (we carelessly used
bm = 94m2 in [4]), the bound we derive for the random walk in §7 is the same as in [4]. We believe
that the mixing time of both chains is far better than our bounds, but we have not attempted to optimize
the constants.

7 Analysis of the random walk

We now show that the natural random walkW defined in §2 is rapidly mixing. We prove this using
the comparison theorem of Diaconis and Saloff-Coste [8]. For a Markov chainM on a state space Ω,
let ker(M) denote the set of pairs (X, Y ) ∈ Ω2 such that PrM[X, Y ] > 0.

Theorem 15 (Diaconis and Saloff-Coste [8]) Let Ω be a set of discrete structures. LetM andM′

be two ergodic and reversible Markov chains which both converge to the uniform distribution on Ω.
Suppose the mixing time ofM is bounded above by τM(ε).

Suppose we are given a set P = {pX,Y : (X, Y ) ∈ ker(M)} containing a canonical path pX,Y

connecting X to Y on G(M′), for every pair of states (X, Y ) ∈ ker(M). For (Z,W ) ∈ ker(M′),
define

AZ,W = 1
PrM′ [Z,W ]

∑
(X,Y )∈ker(M)
(Z,W )∈pX,Y

|pX,Y |PrM[X, Y ].

Then the mixing time τM′(ε) is

O
(
τM(ε) ln(|Ω|) max

(Z,W )∈ker(M′)
AZ,W

)
.
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We now use Theorem 15 to bound the mixing time ofW in terms of the mixing time ofMHB.
We construct a canonical path pX,Y on G(W) for every pair of vertices (X, Y ) ∈ ker(MHB).

Recall that by our definition ofMHB in §4, for any pair (X, Y ) ∈ ker(MHB), there exists a set JX,Y

of at most bm columns such that j ∈ JX,Y iff either Xj 6= Yj or j ∈ ΓX ∪ ΓY . Let b = |JX,Y |. Let
X̂ be the matrix consisting of the columns Xj for j ∈ JX,Y , and let Ŷ be the matrix consisting of the
columns Yj for j ∈ JX,Y . For every i ∈ [m], let si be the source quantity for the ith row of X̂ . By
definition of JX,Y , si is also the source quantity for the ith row of Ŷ . Let P(s, c) be the (m−1)(b−1)-
dimensional transportation polytope with source quantities si for i ∈ [m] and destination quantities
cj for j ∈ JX,Y . X̂ and Ŷ are both vertices of P(s, c).

By Lemma 3, there are at most (em)bm+m−1 vertices of the (m − 1)(b − 1)-dimensional trans-
portation polytope P(s, c). Also by definition of JX,Y (if j 6∈ JX,Y , then Xj has exactly one non-zero
cell) any point Ẑ inside P(s, c) is a vertex of P(s, c) iff the point Z defined by

Zj =
{

Ẑj if j ∈ JX,Y

Xj if j 6∈ JX,Y

is a vertex of the original transportation polytope P(r, c) (see, for example, Hadley [16]).
It is a result of Balinski [1] that the connectivity of the edge-vertex graph of a polytope is equal

to its dimension. Therefore there is a path X̂(0) = X̂, X̂(1), . . . , X̂(` − 1), X̂(`) = Ŷ connecting
X̂ to Ŷ on the edge-vertex graph of the (m− 1)(b− 1)-dimensional transportation polytope. We use
this path to define a sequence of points X(0) = X, X(1), . . . , X(i), . . . , X(`) = Y in the original
polytope P(r, c). For every i ∈ [`], X(i) is the matrix consisting of the columns Xj for j 6∈ JX,Y

and the columns X̂(i)j for j ∈ JX,Y . Also, X(i) is a vertex of P(r, c) for every i ∈ [`] and also
(X(i − 1), X(i)) is an edge of P(r, c) for every i ∈ [`] (see Hadley [16]). Therefore the path pX,Y

given by X(0) = X, X(1), . . . , X(`) = Y is a path of length at most (em)bm+m−1 (see Lemma 3)
in the edge-vertex graph G(W).

Let P = {pX,Y : X, Y ∈ ker(MHB)}. Now we show that this set of canonical paths does not
overload any edge (Z,W ) of G(W). Partition the elements (X, Y ) of ker(MHB) according to the
set B of bm columns used to move from X to Y . We will write (X, Y ) ∈ MHB(B) if (X, Y ) is an
element of ker(MHB) and X and Y differ only on the columns in B. Then we find that AZ,W is at
most

1
PrW [Z,W ]

∑
B⊂[n],
|B|=bm

∑
(X,Y )∈ker(MHB(B))

(Z,W )∈pX,Y

|pX,Y |PrM[X, Y ]

which is at most
1

PrW [Z,W ]

∑
B⊂[n],
|B|=bm

∑
(X,Y )∈ker(MHB(B))

(Z,W )∈pX,Y

(em)bm+m−1PrM[X, Y ].

However, once we fix a set of columns B, we know that there are at most (em)bm+m−1 different
vertices of P(r, c) which agree with Z (and W ) on all columns j 6∈ B. Using this, and the fact that
PrM[X, Y ] ≤ 1, we find

AZ,W ≤ 1
PrW [Z,W ]

∑
B⊂[n],|B|=bm

(em)3(bm+m−1)

AZ,W ≤ 2nm

(
n

bm

)
(em)3(bm+m−1)
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for any (Z,W ) ∈ ker(W), using PrW [Z,W ] = 1/2dm = 1/2nm. Using bm = 47m2, we have

AZ,W ≤ 2nmn47m2
(em)3(bm+m−1).

Applying Theorem 15 and (10), and using |Ω| ≤ (em)n+m−1 (Lemma 3), we find that

τW(ε) ∈ O
(
τM(ε) ln(|Ω|) max

(Z,W )∈ker(M′)
AZ,W

)
.

∈ O
(
n156m2+m+1 ln(ε−1)

)
= O(n157m2

) ln(ε−1).

8 Approximate counting

It is not difficult to turn our sampling algorithm into a fully polynomial randomized approximation
scheme (fpras) for counting the number of vertices |Ω| of P(r, c). We will briefly sketch the method.

If n < 2(m + 1), determine |Ω| by complete enumeration. (See, for example, [11].) Otherwise,
at least n − m + 1 columns j have the single entry cj at any vertex, and each column has only m
cells. Therefore some particular cell (i∗, j∗) contains cj∗ with probability at least (n−m+1)/mn ≥
1/(2m). Identify such a cell, and estimate the proportion p of all vertices in which it contains cj∗ ,
by sampling. But p = |Ω′|/|Ω|, where |Ω′| is the number of vertices of the transportation polytope
P(r′, c′), when we define c′ = (c1, . . . , cj∗−1, cj∗+1, . . . , cn), r′i∗ = ri∗ − cj∗ , and r′i = ri, i =
[m] \ {i∗}. We estimate |Ω′| recursively, and estimate |Ω| by |Ω′|/p.

9 Conclusions

The question of whether we can sample vertices of a general TP, when the number of sources is not
constant, is still open. It is not clear whether balanced almost-uniform permutations could be helpful
in solving this problem, because to date, balanced almost-uniform permutations have only been used
to prove rapid mixing in the context of constant m. Note that the random walk of Definition 1 cannot
be used directly to sample vertices of the TP when the number of sources is variable, as the degree of
vertices may vary exponentially in the degenerate case.

The improved balanced almost-uniform permutations constructed in §5 rely heavily on the special
structure of the TP vertices. They do not hold for general m-dimensional weights, and do not allow
us to improve the mixing-time bound of Cryan et al. [3] for m-dimensional contingency tables or that
of Morris and Sinclair [25] for m-dimensional knapsack.
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