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Abstract. We consider the problem of approximately counting integral flows in a network.
We show that there is an fpras based on volume estimation if all capacities are sufficiently large,
generalising a result of Dyer, Kannan and Mount (1997). We apply this to approximating the number
of contingency tables with prescribed cell bounds when the number of rows is constant, but the row
sums, column sums and cell bounds may be arbitrary. We provide an fpras for this problem via
a combination of dynamic programming and volume estimation. This generalises an algorithm of
Cryan and Dyer (2002) for standard contingency tables, but the analysis here is considerably more
intricate.
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1. Introduction. In this paper we consider two related counting problems. First
we consider the problem of counting integral flows in a general capacitated network. A
special case of this problem was considered by Kannan and Vempala [21]. They gave
an fpras (fully polynomial randomized approximation scheme) to approximately count
integral s− t flows in an undirected network when all edge capacities are sufficiently
large. Recently Baldoni-Silva, De Loera and Vergne showed that integer-valued flows
in a general capacitated network can be represented as lattice points inside a related
flow polytope [3]. Hence, they construct exact counting algorithms using Barvinok’s
approach [2] to counting lattice points in a fixed-dimensional polytope. Their algo-
rithms run in polynomial-time if the dimension of the flow polytope is constant. Some
applications are also discussed in [3]. In general, exactly counting lattice points is
#P-Complete [16, 28], and only approximation is possible in polynomial-time. Jer-
rum, Sinclair and Vigoda [19] gave an fpras for the special case of 0-1 flows, where all
capacities are 0 or 1, via a reduction to the problem of evaluating the permanent. By
contrast, our first contribution in this paper (in §2) is to show there is an fpras, based
on sampling and volume estimation for convex bodies [14], whenever the minimum
(tight) capacity in the network (as defined in §2 below) is sufficiently large. Interest-
ingly, the proof relies on the properties of the maximum spanning tree in the network
(using the capacities as weights) to show that the flow polytope is well-rounded [17].
We note that establishing this property is far from straightforward for general flow
polytopes, whereas it follows directly for the special case considered in [21].

The result of §2 can be applied directly to counting cell-bounded contingency
tables, which we now define. Let [`] denote the set {1, . . . , `}. Suppose we are given a
list of positive integers r = (r1, . . . , rm) called the row sums, another list of positive
integers c = (c1, . . . , cn) called the column sums, and a cell bound bij , for every
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i ∈ [m], j ∈ [n]. Assume that bij ≤ min{ri, cj} for all i ∈ [m], j ∈ [n], and that∑m
i=1 ri =

∑n
j=1 cj (the table sum). Then the set Σr,c,b of cell-bounded contingency

tables is the set of all m×n non-negative integer matrices x which satisfy the row and
column sums, and also satisfy xij ≤ bij for all i ∈ [m], j ∈ [n]. We will see in §3 that
cell-bounded contingency tables are equivalent to integer flows in an appropriately-
defined bipartite network. The definition of Σr,c,b is a generalisation of the set Σr,c

of standard contingency tables (where the cell bounds are bij = min{ri, cj} for all
i ∈ [m], j ∈ [n]).

The problem of sampling standard contingency tables from Σr,c almost uni-
formly at random has important applications in practical statistics (see Diaconis and
Efron [8]). Much work has been carried out on this and on the related problem of
approximating the total number of tables |Σr,c| (see, e.g., [5, 6, 7, 9, 10, 13, 16, 18, 24,
25]). The algorithm of Barvinok [2] for counting lattice points in a polytope can be
used to count contingency tables exactly in polynomial-time when the numbers of rows
and columns are both constant. This has been implemented successfully in [7]. Dyer,
Kannan and Mount [16] showed that, whenever the row sums satisfy ri ∈ Ω(n2m)
for all i ∈ [m] and the column sums satisfy cj ∈ Ω(m2n) for all j ∈ [n], there is
an fpras for counting standard contingency tables. This was improved later by Mor-
ris [23]. Dyer and Greenhill [13] gave an fpras to approximately count contingency
tables with two rows by proving a natural Markov chain called the 2 × 2 heat bath
chain is rapidly mixing. Subsequently, Cryan and Dyer [5] gave an fpras based on a
combination of dynamic programming and volume estimation to count tables when
the number of rows m is a constant. Cryan et al. [6] gave an alternative algorithm
for the constant m case by proving that the 2 × 2 heat bath Markov chain on such
tables is rapidly mixing. Later, Dyer [12] gave an fpras based entirely on dynamic
programming, improving substantially on the running time of the algorithms in [5]
and [6]. However, the existence of an fpras for counting standard contingency tables
in the general case remains a notorious open problem.

Counting and sampling cell-bounded contingency tables also has natural appli-
cations in statistics, in the case where each cell has a known maximum. According
to Diaconis and Gangolli [9], this is a “practical class of problems.” However, there
appears to have been little work on this problem except in the case where some
cell upper bounds may be zero (so-called structural zeros). The Markov chain used
in [6, 13], which updates values in a 2 × 2 submatrix during each step of the simu-
lation, is no longer viable in the cell-bounded case since the state space might not
even be connected; for example, a 3 × 3 table with structural zeros on the diagonal
has no allowable moves. Aoki [1] and Rapollo [26] recently considered the design of
alternative chains for sampling such tables using the “Markov basis” approach of Di-
aconis and Sturmfels [11]. The required sampling distribution will be uniform when
the conditional volume test of [8] is employed. However, the main focus of these pa-
pers is on sampling from the hypergeometric distribution, which seems to be easier
than the uniform case. These Markov chains take small steps, so they cannot lead
to polynomial time sampling unless all numbers are given in unary. More recently,
Bezáková, Bhatnagar and Vigoda [4] considered binary contingency tables, which are
cell-bounded contingency tables with all cell bounds equal to 1. Binary contingency
tables can be represented as 0-1 flows, so an fpras is known to exist [19]. Bezáková
et al. gave an improved fpras for binary contingency tables, by bounding the mixing
time of a Markov chain on the set of binary contingency tables and “near-contingency
tables.”
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There are general theoretical reasons for studying cell-bounded tables. It is well-
known that for any self-reducible relation, the problem of obtaining an fpras for ap-
proximate counting is equivalent to the problem of finding an fpaus (fully polynomial
almost uniform sampler) [20]. Standard contingency tables are not known to be self-
reducible, which is unusual. However there is a simple self-reducible characterisation
of cell-bounded contingency tables. Another interesting fact about cell-bounded con-
tingency tables is that they generalise the concept of perfect matchings in a bipartite
graph (where all cell-bounds are 0 or 1 and all row and column sums are 1). Approxi-
mating the number of perfect matchings in a bipartite graph (the 0-1 permanent) was
an important open problem for several years, until Jerrum, Sinclair and Vigoda [19]
finally established the existence of an fpras.

The second overall contribution of our paper is to put the problem of approxi-
mately counting cell-bounded contingency tables on precisely the same footing as that
of approximately counting standard contingency tables. One immediate consequence
of the main result of §2 is that, if all cell bounds are “sufficiently large” (in a sense we
will define later), then we can use sampling and volume estimation for the flow poly-
tope to obtain an fpras to count approximately the number of cell-bounded tables.
This result does not depend on the number of rows or columns. Therefore it can be
seen as a direct generalisation to the cell-bounded case of the result of Dyer, Kannan
and Mount [16] for standard contingency tables.

Following the other thread of results for contingency tables, in §3 we assume
that the number of rows is constant but make no assumptions about the size of
the cell bounds. We show that we can combine dynamic programming and volume
estimation to design an fpras in this case. This fpras is broadly similar to that of Cryan
and Dyer [5], which was also a combination of dynamic programming and volume
estimation, but the structure of cell-bounded tables is considerably more intricate
than that of standard tables. However, since cell-bounded contingency tables may be
viewed as integral flows in a bipartite network, we are able to extend the approach of
§2. Our proof relies even more strongly on properties of the maximum spanning tree.

These are the first results that provide provably efficient counting and sampling
algorithms for non-trivial classes of cell-bounded contingency tables. Moreover, they
demonstrate that these seemingly broader classes of problems might not be harder
than counting and sampling standard contingency tables without cell bounds. The
question of existence of an fpras for the general problem of counting cell-bounded
contingency tables remains open, as it does for standard contingency tables. However,
since an fpras for general cell-bounded tables would include approximating the 0-1
permanent [19] as a special case, it may prove elusive. On the other hand, the results
of this paper are some indication that standard contingency tables have no exploitable
structure beyond that which exists in the cell-bounded case. Consequently, there is
no obvious reason to expect that an fpras for standard contingency tables may be
found any more easily than one for the general cell-bounded case.

2. Counting integral flows. Suppose that we have a flow network N = (V,A)
with capacities b(a) ∈ Z+ ∪ {∞} (a ∈ A) and supplies ρ(v) ∈ Z (v ∈ V) such that∑

v∈V ρ(v) = 0. Negative supplies are called demands. We will write n = |V |, m = |A|
and d = m− n + 1. A flow x must satisfy∑

w:a=(v,w)

x(a) −
∑

w:a=(w,v)

x(a) = ρ(v) (v ∈ V), (1)

0 ≤ x(a) ≤ b(a) (a ∈ A). (2)
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We are interested in estimating the number of integral flows. Any capacitated flow
problem can be put in the form (1)-(2) without changing the size of the solution set.
Note that the representation of integer network flows as skew-symmetric matrices
which is commonly used in optimization depends on reducing the network to another
network N ′ on the same set of vertices, in which every pair of vertices is connected
by at most one arc (with the concept of a “back-edge” to mirror this arc). This
representation of integer network solutions as skew-symmetric matrices is commonly
used in optimization. However, the reduction works with the concept of “net flow”
and does not preserve the number of solutions to (1)-(2). If we are actually interested
in counting the skew-symmetric solutions to N ′, these can also can be described in
terms of integer solutions to (1)-(2): to achieve this, we restrict the a variables in (1)
to sum over the arcs of N ′ with positive capacity, and we only add equation (2) for
the arcs of N ′ which have positive capacity.

Note that in the case of a general network, we allow N to contain parallel and
antiparallel arcs between any two vertices since replacing these with a single edge
might alter the number of integer flows satisfying (1)-(2). Also note that we may
dispose of the case in which the number of solutions is infinite, corresponding to the
existence of a directed cycle in the set {a ∈ A : b(a) = ∞}. If no such cycle exists,
the system (1)–(2) determines a flow polytope P. The integer solutions are the lattice
points inside P, and we use I(P) to denote the set of all such lattice points.

Our goal in this section is to develop an fpras for counting the number of integral
flows when the minimum capacity is sufficiently large. That is, given an error tolerance
ε ∈ (0, 1

2 ), we will design an algorithm that runs in time polynomial in n, ε−1, and
log(maxa b(a)) and produces an estimate |I ′| of |I(P)| that satisfies

(1− ε)|I(P)| ≤ |I ′| ≤ (1 + ε)|I(P)|

with high probability. We accomplish this by relating |I(P)| to the volume of P.
We assume that N has tight capacities, defined as follows.
Definition 1. A network N has tight capacities if for each a ∈ A, there exist

flows f−a , f+
a satisfying f−a (a) = 0 and f+

a (a) = b(a) (and b(a) > 0).
If the network does not satisfy this condition, we can make a polynomial-time

transformation to define a new network with the same number of integral flows. For
each arc a, we find maxx x(a), the maximum value of x(a) over all flows, by solving
a minimum cost flow problem. (See, for example, Schrijver [27, §12].) Similarly, for
every a ∈ A, we find minx x(a) by solving a minimum cost flow problem. We let the
new capacities be

(
maxx x(a)−minx x(a)

)
(a ∈ A), and let the new supplies be

ρ(u)−
∑

(u,v)∈A

min
x

x(u, v) +
∑

(w,u)∈A

min
x

x(w,u) (∀u ∈ V).

It is straightforward to check that there is a bijection between flows in the two net-
works. The modified network can be constructed in polynomial time by solving at
most 2m minimum cost flow problems. We also may assume that b(a) > 0 for all
a ∈ A, since otherwise arc a can be deleted from A.

Using the convexity of the flow polytope, we can now define an internal flow.
Definition 2. Given a flow polytope P with tight capacities, we define an internal

flow

f =def
1

2m

∑
a∈A

(f−a + f+
a ). (3)
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In general f will not be an integral flow. We will use rational flow for functions like
f whereas, without qualification, flow will mean integral flow. Note that 1

2mb(a) ≤
f(a) ≤ b(a) − 1

2mb(a) for all a ∈ A, using the tightness of the capacities. For any
flow x, define the slack for x on arc a as min{x(a), b(a) − x(a)}. Thus our internal
flow f has slack at least b(a)/2m on every arc a.

We now define the concept of a maximum spanning tree of a network. We may
assume N is connected, since otherwise the system (1)–(2) decomposes and we can
consider each component separately and take the product of the number of solutions
for each component.

Definition 3. Consider the (connected) undirected multigraph G = (V, E) un-
derlying N . We will abuse notation and refer to an arc a ∈ A as an edge a ∈ E,
forgetting its direction. Let E have edge weights b(a). Then a maximum spanning
tree for N is any maximum weight spanning tree T in G.

It follows from standard network flow theory [27, §13] that we can eliminate the
variables x(a) (a ∈ T) from the system of equations (1)–(2) to give a system of 2m

inequalities in d = (m− n + 1) bounded variables x(a) (a ∈ A′ = A \ T).
We now show, using the spanning tree T , that there is an ellipsoid, and also a

ball, centred at f, lying entirely inside P. The approach of using a spanning tree of
a network to define a full-dimensional representation of the flow polytope has been
used before [21], but it is the idea of using the maximum-weight spanning tree which
drives our result.

Theorem 4. Let N = (V,A) be a connected network with tight capacities b(·).
Let T be any maximum spanning tree for N . Let bmin = mina∈A\T b(a), and let
δ = bmin/2m

√
d (where d = m− n + 1). Then the flow polytope P contains the ball

B(f, δ).
Proof. For any a ∈ A′ = A \ T , consider the rational flow g+

a defined by

g+
a (a) = f(a) + 1

2mb(a) and
g+

a (a′) = f(a′) (a′ 6= a, a′ ∈ A′).

Clearly 0 ≤ g+(a′) ≤ b(a′) for all a′ ∈ A′. To define a rational flow, we must
complete this with feasible values of g+

a (a′) (a′ ∈ T). First, we follow the unique
circuit Ca ⊆ T ∪ {a} in the direction of a. For each edge a′ 6= a traversed, if the
direction of a′ is the same as that of a, let g+

a (a′) = f(a′)+b(a)/2m; alternatively, if
a′ has the opposite direction to a, g+

a (a′) = f(a′)− b(a)/2m. We set g+
a (a′) = f(a′)

for all a′ ∈ T \ Ca. This ensures that g+
a still satisfies all the supplies ρ(.). It follows

that for all a′ ∈ Ca we have b(a) ≤ b(a′) and

g+
a (a′) ∈ f(a′)± 1

2mb(a) ∈ f(a′)± 1
2mb(a′) ∈ [0, b(a′)],

since T is a maximum spanning tree. Similarly we can find g−a such that g−a (a) =
f(a)− 1

2mb(a) and g−a (a′) = f(a′) (a′ 6= a, a′ ∈ A′). Now consider P as a polytope in
Rd = Rm−n+1, determined by x(a) (a ∈ A′). From the properties of f, P is contained
in the hyper-rectangle

−(1− 1
2m )b(a) ≤ x(a)− f(a) ≤ (1− 1

2m )b(a) (a ∈ A′).

Thus, P is contained in the ellipsoid

Eext =

{
x :

∑
a∈A′

(
x(a)− f(a)

b(a)

)2

≤ d
(
1− 1

2m

)2

}
.
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We have shown that P contains H = conv{g+
a , g−a : a ∈ A′}. This is an axis-scaled

`1-ball, so

H =

{
x :

∑
a∈A′

∣∣∣∣x(a)− f(a)
b(a)

∣∣∣∣ ≤ 1
2m

}
.

Now, using Cauchy-Schwarz, H contains the ellipsoid

Eint =

{
x :

∑
a∈A′

(
x(a)− f(a)

b(a)

)2

≤ 1
4m2d

}
.

which is Eext scaled by d(2m − 1). Let bmin = mina∈A′ b(a) and δ = bmin/2m
√

d.
Then Eint contains the ball B(f, δ).

We now show |I(P)| is close to vol(P) when bmin is sufficiently large.
Theorem 5. Let N = (V,A) be a connected network with tight capacities b(·).

Let T be a maximum spanning tree for N . Let P be the flow polytope in Rd, with axes
indexed by A \ T , where d = m−n+1. If bmin > 2md and ε ≥ 2md2/(bmin− 2md),
then

e−εvol(P) ≤|I(P)| ≤ eεvol(P).

Proof. Our proof is similar in principle to that of Theorem 3 in [5], though the
polytope we consider here is more constrained. We use a full-dimensional representa-
tion of P in Rd, relative to the internal flow f defined in (3). Thus, we translate z ∈ Rd

to z′ so that z′(a′) = z(a′) − f(a), for a′ ∈ A′ = A \ T . Then, for each lattice point
z′ = z − f ∈ I(P), we associate with z′ the hypercube H(z) in d-dimensions, where
y ∈ H(z) iff z′(a) ≤ y(a) < z′(a) + 1 for all a ∈ A′. Let C = ∪z∈I(P)H(z). Clearly
|I(P)| = vol(C). We will refer to the dilation αQ of a d-dimensional convex polytope
Q as {αx : x ∈ Q}. It is well-known that this has volume vol(αQ) = αdvol(Q). We
now prove the theorem in two parts.

We first show that C ⊆ (1 + ε/d)P. For every z ∈ I(P) and every y ∈ H(z),
dist(y, z) ≤

√
d, where dist(·, ·) denotes Euclidean distance. Suppose y ∈ H(z) for

some z ∈ P but y 6∈ P. Clearly dist(y,P) ≤
√

d. Also, we know that there is a ball of
radius δ with centre f lying inside P. The dilation (1 + ε/d)P will therefore contain
all points with distance at most

εδ

d
≥ bmin

√
d

(bmin − 2md)
>
√

d

from P. So H(z) ⊆ (1 + ε/d)P for every z ∈ I(P). Hence C ⊆ (1 + ε/d)P.
Now we will show that the dilation (1+ε/d)−1P ⊆ C. Let y ∈ (1+ε/d)−1P and

let z ∈ Zd be the lattice point with y ∈ H(z). We will show that z ∈ I(P). Clearly
dist(y, z) ≤

√
d. Since there is a ball of radius δ inside P, there is a ball of radius

(1 + ε/d)−1δ inside (1 + ε/d)−1P. Dilating (1 + ε/d)−1P by (1 + ε/d) gives the
original polytope P. Thus the dilation P of (1 + ε/d)−1P contains every point with
distance from (1 + ε/d)−1P at most

ε

d
· δ

1 + ε/d
≥
√

d.
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Hence, (1 + ε/d)−1P ⊆ C.
Observing that (1 + ε/d)d ≤ eε completes the proof.
Corollary 6. Let N = (V,A) be a connected network with tight capacities and

let P be the corresponding flow polytope in Rd. If bmin ∈ Ω(md2/ log m) then there
is an fpras for the number of integral flows |I(P)|.

Proof. To use volume estimation to design an fpras, Theorem 5 is useful only
if eε is polynomially bounded in m and d. Since m ≥ d, this is guaranteed when
bmin ∈ Ω(md2/ log m), with the approximation error depending on ε. The require-
ment bmin > 2md then clearly becomes void. We now show how to find an improved
approximation ratio, by eliminating the apparent dependence of the approximation
error on ε in Theorem 5. Let η > 0 be the target relative error. First we determine
vol(P) to relative error η/3, with high probability, using an fpras for volume estima-
tion (see, e.g., [14, 22]). The original volume algorithm is due to Dyer, Frieze and
Kannan [14], but many improvements now exist, with the most recent being that of
Lovász and Vempala [22]. Similarly, we can sample a point x from P using the fpaus
of [14], or one of its successors. Suppose we sample x ∈ P almost uniformly in this
way. Recall that C =

⋃
{H(z) : z ∈ I(P)}, where H(z) is the multidimensional unit

hypercube with least point z. Let P ′ = (1 + ε/d)P, so x′ = (1 + ε/d)x is a uniform
sample from P ′. Note that vol(P ′) = (1 + ε/d)dvol(P). Now |I(P)| = vol(C), and
C ⊆ P ′. Let p = vol(C)/vol(P ′). We have p ≥ e−2ε from Theorem 5, so by assump-
tion it is bounded below by an inverse polynomial. We can recognise when x′ ∈ C by
rounding down to find the unique y ∈ Zd such that x′ ∈ H(y) and checking whether
y ∈ P. Thus, with high probability, we can obtain an approximation p̂ for p with
relative error at most η/3 by taking O(e2ε/η2) samples. We can estimate vol(C) as
p̂(1 + ε/d)dvol(P). Now the relative error is at most η, so this procedure gives an
fpras (and an fpaus) for any class of flow problems satisfying bmin ∈ Ω(md2/ log m).

To the best of our knowledge, the above relationship between the lattice points of
a polytope and the volume of that same polytope was first used by Dyer et al. [15] for
sampling integer points of the multi-dimensional knapsack polytope. It was later ap-
plied to the contingency tables polytope (with sufficiently large row and column sums)
by Dyer, Kannan and Mount [16]. Dyer, Kannan and Mount showed that for the case
of standard contingency tables (no given cell bounds) there is an fpras to approxi-
mately count the elements of Σr,c if ri ∈ Ω(mn2) for all i ∈ [m] and cj ∈ Ω(m2n) for
all j ∈ [n]. Morris [23] subsequently refined this analysis to show that the fpras exists
even for ri ∈ Ω(mn3/2 log(n)) and cj ∈ Ω(m3/2n log(m)). Subsequently Kannan and
Vempala [21] gave an improvement to this method, using randomized rounding, for the
class of polytopes Q which can be defined by a system of inequalities Ax ≤ b, x ≥ l,
where A ∈ Rkd, b ∈ Rk is a vector of non-negative values, and l ∈ Rd is a vector of
lower bounds. Kannan and Vempala showed that for these polytopes, if Q contains
a ball of radius Ω(d

√
log k), then there is an fpras for I(Q). This class of polytopes

includes the polytope of multi-dimensional knapsack solutions and the contingency
tables polytope, but not the class of polytopes of a general flow network. Our The-
orem 5 and Corollary 6 require a ball of radius Ω(d3/2/ log(m)), which is of order
Θ(
√

d/ log3/2(m)) greater than the radius of the ball required by Kannan and Vem-
pala. However, we do not see how to extend their randomized rounding method to
the case of general bounded polytopes.

3. Contingency tables with cell bounds. We now consider cell-bounded con-
tingency tables with m rows and n columns, row sums ri > 0 (i ∈ [m]) and column
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sums cj > 0 (j ∈ [n]). The upper bound on cell (i, j) will be denoted by bij , and the
lower bound is zero.

We employ a correspondence between cell-bounded contingency tables and integer
flows in a bipartite network. For given values of r, c and b, consider a network N
defined by V = [m] ] [n] and A ⊆ [m] × [n]. Then n = m + n, m ≤ mn. We will
also define d = m− n + 1 ≤ (m− 1)(n− 1). The supplies ρ are ri (i ∈ [m]) and −cj

(j ∈ [n]). The capacities are b(i, j) = bij for (i, j) ∈ A. It is easy to see that there is
a bijection between Σr,c,b and the set of integer flows in N .

We are interested in developing an fpras for counting cell-bounded contingency
tables for certain classes of inputs. That is, given an error tolerance ε ∈ (0, 1

2 ), the goal
is to design an algorithm which runs in time polynomial in n, ε−1 and maxij log bij

and produces an estimate |Σ′| of |Σr,c,b| that satisfies

(1− ε)|Σr,c,b| ≤ |Σ′| ≤ (1 + ε)|Σr,c,b|,

with high probability.
The correspondence between flows and cell-bounded tables gives us the following

theorem as an immediate consequence of Corollary 6. This can be viewed as a gener-
alisation of the Dyer, Kannan, and Mount [16] result stated above, with the additional
assumption that all cell bounds, as well as row and column sums, are sufficiently large.
Note that, since cell-bounded contingency tables are self-reducible, the existence of
an fpaus will then follow from the general results of [20]. When Corollary 6 is spe-
cialised to standard contingency tables, the lower bounds on row and column sums
that we require are larger than in [16]. Combining our Theorem 4 with [21], we ob-
tain Ω

(
(mn)5/2

√
log (mn)

)
, whereas [16] has Ω(mn

2) for row totals and Ω(m2
n) for

column totals. It is possible that these results could be improved by a more tailored
argument, but we will not explore this further in this paper.

Theorem 7. Let Σr,c,b be a set of cell-bounded contingency tables with row sums
ri > 0, (i ∈ [m]), column sums cj > 0, (j ∈ [n]), and (tight) cell bounds bij > 0,
(i ∈ [m], j ∈ [n]). There is an fpras for |Σr,c,b| if mini,j bij ∈ Ω((mn)3/ log(mn)).

In the remainder of the paper we consider a second class of cell-bounded con-
tingency tables where the number of rows m is a constant. We show the following
theorem, which requires no assumptions about the size of the row and column sums.
This theorem also implies the existence of an fpaus.

Theorem 8. Let Σr,c,b be a set of cell-bounded contingency tables with row
sums ri > 0, (i ∈ [m]), column sums cj > 0, (j ∈ [n]), and cell bounds bij > 0,
(i ∈ [m], j ∈ [n]), and let m be a constant. Then there is an fpras for |Σr,c,b|.

The algorithm used to establish Theorem 8 is based on combining the approach
of §2 with partial dynamic programming. We present an overview of our fpras (and
a high-level proof of Theorem 8) in §3.1, giving details of the dynamic programming
in §3.2 and presenting the volume estimation proofs in §3.3. Before starting our proof,
we present some definitions, and prove some basic facts about these definitions.

A critical parameter of the algorithm will be

β = 6 + 2 logn(32m6ε−1).

The parameters p, q and r will also be important later, with p = q + β/2, q ≥ β,
r ≥ q + β.

We define r(`) to be the list of row sums (r1, . . . , r`) for any ` ≤ m and c(k) to be
the list of column sums (c1, . . . , ck) for any k ≤ n. We define r(`) to be (r`+1, . . . , rm)
for any ` < m and c(k) = (ck+1, . . . , cn) for any k < n.
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As in §2, we will assume without loss that at the beginning of the dynamic
programming phase we have tight cell bounds, i.e., for every i ∈ [m], j ∈ [n], there is
some table x ∈ Σr,c,b such that xij = bij and some table y ∈ Σr,c,b such that yij = 0.
If this is not true initially, we can transform the input into this format by solving
2mn minimum cost flow problems in polynomial-time (see, for example, Schrijver [27,
§12]). For each i ∈ [m], j ∈ [n], we evaluate maxx xij and minx xij . Then we modify
the values of bij , ri and cj in the manner described in §2. It is clear that Σr,c,b has
tight cell bounds if and only if N has tight capacities. If bij = 0, we delete (i, j) from
A. Later, it will become necessary to work with networks and cell-bounded tables
which do not have tight capacities or bounds. Then we will use `ij and b′ij to represent
the tight lower and upper bounds for cell (i, j).

The maximum spanning tree T of the network N defined in the last section again
plays an important role in our algorithm. We will assume that N is connected, as in
§2. In that case, the maximum spanning tree can be constructed in O(mn log n) time
by a standard algorithm [27, §50]. It is straightforward to show that the maximum
spanning tree T is a set of n+m−1 cells. Since each column must contain an element
of T , therefore by the properties of maximum spanning trees, the tree must have the
following structure.

(i) There is a set of columns which contain a single cell of T ; that is, there is a
single cell (i∗, j) ∈ T such that bi∗j = maxi bij . Denote this set of cells by D.

(ii) A set K of k = |K| ≤ (m − 1) columns containing at least two cells per
column, giving (k + m− 1) ≤ 2(m− 1) cells in total. We denote this set of cells by B.
For each j ∈ K, there is some i∗ with bi∗j = maxi bij such that (i∗, j) ∈ B.
Clearly T = B ]D. In the special case of standard contingency tables [5] T has a
very special structure: B contains all cells in the column with maxj cj and D contains
all remaining cells in the row with maxi ri. In cell-bounded tables the structure of
T is less predictable but is crucial for our algorithm. We will use T to partition the
columns of the table into small and large columns, and the rows of the table into small
and large rows. The key to this partitioning is a “jump” property for the cells of B.
We define this property as follows:

Definition 9. Consider any pair of values q, r. The interval J = [nq, nr] is said
to be a jump if it is the case that q ≥ β, q + β ≤ r ≤ 2mβ, and for all (i, j) ∈ B,
bij /∈ J .

Before proceeding, we need the following lemma:
Lemma 10. For every i ∈ [m], there exists a j′ ∈ [n] such that (i, j′) ∈ B and

bij′ > ri/mn.
Proof. First observe that for any given i ∈ [m], there must exist (i, j∗) ∈ T such

that bij∗ = maxj bij ≥ ri/n, since T is a maximum spanning tree and we have assumed
the bij bounds are tight. If (i, j∗) ∈ B, then we take j′ = j∗, and we are finished.

Otherwise, suppose (i, j∗) is in D. Then, given our assumption of tight bounds,
column j∗ must contain some cell (i′, j∗) with i′ 6= i such that bi′j∗ > bij∗/m. If this
was not the case, we would have∑

i′ 6=i

bi′j∗ ≤ (m− 1)bij∗/m ≤ (m− 1)cj∗/m.

Then, for every table x ∈ Σr,c,b, we would require xij∗ ≥ cj∗ −
∑

i′ 6=i bi′j∗ ≥ cj∗/m.
This contradicts the tightness of the bounds for cell (i, j∗), since it implies a positive
lower bound. Hence there must be at least one i′ 6= i such that bi′j∗ ≥ bij∗/m.
Also, because (i, j∗) ∈ D, we have (i′, j∗) 6∈ T . Therefore, there must be a path in T
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connecting i′ to j∗. Moreover, given the alternating nature of row and column indices
in the tree T , the path is contained in the cells of B ∪ {(i, j∗)}. But now there is a
circuit Γ in B ∪ {(i, j∗), (i′, j∗)} with (i, j∗) ∈ Γ ∩ T , (i′, j∗) ∈ Γ \ T . Clearly there is
some cell (i, j′) ∈ Γ∩B and we must have bij′ ≥ bi′j∗ , since T is a maximum spanning
tree. Thus bij′ ≥ bi′j∗ > bij∗/m ≥ ri/mn, as required.

We now prove that unless all cell bounds are less than n2mβ , there is a jump in B.
Lemma 11. Suppose that n ≥ m and we are given r = (r1, . . . , rm), c =

(c1, . . . , cn), and tight cell bounds {bij : i ∈ [m], j ∈ [n]}. Then either bij < n2mβ

for all i ∈ [m], j ∈ [n] or there is a jump J = [nq, nr] with q ≥ β, q + β ≤ r ≤ 2mβ
for B.

Proof. Let (i0, j0) be such that bi0j0 is a largest cell bound. Assuming bi0j0 >
n2mβ , from Lemma 10 there exists (i0, j1) ∈ B with bi0j1 ≥ n2mβ−2. There are at
most 2(m− 1) cells of B. We may assume that some one cell has bound at most n2β ,
otherwise we can set J = [nβ , n2β ]. So assume there exists (i2, j2) ∈ B such that
bi2j2 ≤ n2β . There are at most 2m − 3 other cells in B. If there is no jump J , then
max(i,j)∈B bij ≤ n2βnβ(2m−3) = nβ(2m−1) < n2mβ−2 ≤ bi0j1 , a contradiction.

If bij < n2mβ for every i ∈ [m], j ∈ [n], then we determine |Σr,c,b| exactly by
dynamic programming (see §3.2). Alternatively, assume the jump J exists. In that
case, for any row i ∈ [m], let bij′ = max(i,j)∈B bij . By Lemma 10, if bij′ < nq, then
ri < mnq+1. Alternatively, if bij′ > nr, then ri > nr. Thus all row totals ri satisfy
either ri < mnq+1 or ri > nr. Therefore the jump in the cells in B guaranteed by
Lemma 11 induces a corresponding, though smaller, jump in the row totals.

3.1. Proof of Theorem 8. We now give an overview of our fpras, and present
a high-level proof of Theorem 8.

Definition 12. For any cell with bij < nq, we call (i, j) a small cell. The set of
all small cells is denoted by S. The remaining cells A \ S are called large cells. We
call any row i a small row if every cell (i, j) ∈ B is small. We assume without loss
that [σ] is the set of small rows, for some σ ∈ [m]. Thus ri < mnq+1 if i ∈ [σ]. Rows
[m] \ [σ], called large rows, satisfy ri > nr.

In §3.3 we show that the flow in small cells and rows can be set arbitrarily,
without greatly influencing the number of flows in the residual table, provided the
small row totals are satisfied and the column totals are sufficiently large. We show in
§3.2 how the number of solutions for the small rows and small cells can be determined
by dynamic programming. However, to ensure that we deal with tables in which all
column totals are sufficiently large, we first partition the columns of the table into
small and large columns.

Definition 13. If bij < n2mβ for all i ∈ [m], j ∈ [n], we define the set of small
columns to be [n]. Otherwise q is defined and p = q + β/2. Then the set of small
columns is the set of all columns j satisfying cj < np. We assume without loss that
these are columns [ν] for some ν ∈ [n].

Let R = {(i, j) ∈ A : σ < i ≤ m, ν < j ≤ n}. We refer R as the residual table.
In §3.2 we will use dynamic programming to decompose the problem into smaller
subproblems on R.

First we eliminate the small columns of the table in polynomial time, to express
the value of |Σr,c,b| as the weighted sum of a polynomial number of cell-bounded
contingency problems, each of size m by n− ν, on the large columns. Let Sν be the
set of all feasible partial row sums for the small columns. Thus Sν is the set of all
ordered partitions t = (t1, . . . , tm) of

∑ν
j=1 cj into m parts such that Σt,c(ν),b(ν) 6= ∅.
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For every t ∈ Sν , we will determine

wt =def |Σt,c(ν),b|.

Next we consider the subproblems on the large columns. Let s denote (r− t) through-
out. For each t ∈ Sν , we have row sums si (i ∈ [m]) for the table on the large
columns. We perform dynamic programming on the small rows (ri ≤ mnq+1) to
count exactly the total number of assignments to all small rows, given that the par-
tial row sum over the small columns is t. Let S′ be the set of small cells in R, i.e.
S′ = {(i, j) ∈ R : bij ≤ nq}. For the remainder of this section we are working with
the large columns, and we abbreviate Σs,c(ν),b to Σs,c,b.

Definition 14. Let Σs(σ),∗,b be the set of tables on the small rows which have
row sums si for i ∈ [σ], arbitrary column sums, and satisfy the cell bounds for all
i ∈ [σ], j ∈ [n] \ [ν]. Let S′ denote the set of small cells in R, and let ΣS′ be the set of
assignments to all cells (i, j) ∈ S′ which satisfy the cell bounds.

The second step in §3.2 will be to calculate, for every t ∈ Sν , the term

Wt =def |Σs(σ),∗,b| × |ΣS′ |.

Definition 15. A partial assignment x to all small cells and all cells in small
columns and rows will be called good if it satisfies the cell bounds, each small col-
umn j ∈ [ν] has sum cj, and each small row i ∈ [σ] has sum ri. Let G be the set of
all good assignments.

For any x ∈ G, let N x denote the residual network obtained by fixing the values
of the small columns, small rows and small cells to their values in x. Let Px be the
flow polytope for N x, and let I(Px) be the set of lattice points in Px. Clearly

|Σr,c,b| =
∑
x∈G

|I(Px)|. (4)

We approximate |Σr,c,b| in the following way. We choose any fixed y ∈ G. The residual
network N y is not necessarily connected. However, we make two useful observations:

(a) For every good assignment x ∈ G, N x has the same component structure.
(b) Every component contains at least two rows, so there are at most m/2 com-

ponents.
Facts (a) and (b) follow indirectly from Theorem 16 in §3.2. Fact (a) follows since
Theorem 16 implies thatN x has the component structure of R\S for all x ∈ G. Fact (b)
follows, since Theorem 16 implies Px is full-dimensional for every component, but a
one-row table has a unique rational flow. For each component C of N y, we consider
the flow polytope Py

C of N y
C . We use volume estimation [14, 22] to estimate vol(Py

C)
within relative error ε/2m in time polynomial in n, ε−1 and log(maxij bij). Denote
this estimate by v̂ol(Py

C). Next we define

v̂ol(Py) =def

∏
C

v̂ol(Py
C).

Finally we estimate |I(Px)| by v̂ol(Py), for every assignment x ∈ G. Note Σx∈G1 =
Σt∈Sν wtWt. Therefore our estimate |Σ′| of |Σr,c,b| is

|Σ′| =def

∑
x∈G v̂ol(Py) = v̂ol(Py)

∑
x∈G 1

= v̂ol(Py)
∑

t∈Sν
wtWt.

(5)
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The wt will be computed (in polynomial time) in the first dynamic programming
phase and the Wt in the second dynamic programming phase (see §3.2). The product
v̂ol(Py) is computed by at most m/2 calls to a volume estimation algorithm.

To prove that our algorithm is an fpras, we must show that, with high probability,

(1− ε)|Σr,c,b| ≤ |Σ′| ≤ (1 + ε)|Σr,c,b|.

In Theorem 17 we prove the following, where x,y ∈ G and C is any component of
Ny,

(i) (1− ε/2m)vol(Px
C) ≤ |I(Px

C)| ≤ (1 + ε/2m)vol(Px
C).

(ii) (1− ε/2m)vol(Py
C) ≤ vol(Px

C) ≤ (1 + ε/2m)vol(Py
C).

The proof of Theorem 17 uses the jump J of Lemma 11, and the relationship between
the values of p, q and r. Combining (i) and (ii), we find that for any x ∈ G and
component C,

(1− ε/2m)2vol(Py
C) ≤ |I(Px

C)| ≤ (1 + ε/2m)2vol(Py
C).

By construction we know that, with high probability, the estimate v̂ol(Py
C) lies within

(1± ε/2m)vol(Py
C) for every C. Therefore, with high probability, for every x ∈ G,

(1− ε/2m)3v̂ol(Py
C) ≤ |I(Px

C)| ≤ (1 + ε/2m)3v̂ol(Py
C).

For all x ∈ G we have

|I(Px)| =
∏
C

|I(Px
C)|.

There are at most m/2 components so, with high probability,

(1− ε/2m)3m/2
∏
C

v̂ol(Py
C) ≤ |I(Px)| ≤ (1 + ε/2m)3m/2

∏
C

v̂ol(Py
C).

We have ε ∈ (0, 1
2 ), and m ≥ 2, (1− ε/2m)3m/2 ≥ 1− ε and (1 + ε/2m)3m/2 ≤ 1 + ε.

Hence for all x ∈ G,

(1− ε)v̂ol(Py) ≤ |I(Px)| ≤ (1 + ε)v̂ol(Py).

So by (4) and (5), the value |Σ′| lies within (1± ε)|Σr,c,b|, and our algorithm is indeed
an fpras.

The rest of this section is structured as follows. Section 3.2 contains the details
of the polynomial-time dynamic programming algorithms used to determine wt,Wt

(t ∈ Sν). Subsection 3.3 contains the key Theorem 17 used for the volume estimation.

3.2. Dynamic Programming. We now describe the two phases of the Dynamic
Programming procedure.
Phase 1: Compute wt = |Σt,c(ν),b| for every t ∈ Sν .

Recall s = r − t. There are two cases where we apply dynamic programming:
(1) If there is some i ∈ [m], j ∈ [n] such that bij ≥ n2mβ , we apply dynamic

programming to the small columns [ν] to calculate |Σt,c(ν),b| for every partition t ∈ Sν .
(2) If bij < n2mβ for all i ∈ [m], j ∈ [n], we apply dynamic programming to

calculate |Σr,c,b| exactly. We will refer to this case as the ν = n case.
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We consider each column h (1 ≤ h ≤ ν) in increasing order, and compute |Σt,c(h),b|
for each ordered partition t ∈ Sh. This is similar to the dynamic programming phase
of the fpras of [5] for standard contingency tables with a constant number of rows.

By definition of a small column, we know that every cell bound is at most cj <
np = nq+β ≤ n(2m−1/2)β in the ν < n case, or less than n2mβ in the ν = n case. In
either case we have bij < n2mβ for every cell in a small column.

If h = 1, then |Σt,c(1),b| = 1 for every partition t of c1 into m parts which satisfies
ti ≤ bi1 for all i ∈ [m]. Therefore the cardinality of S1 can be bounded by

|S1| ≤
m−1∏
i=1

(bij + 1) ≤
m−1∏
i=1

n2mβ = n2m(m−1)β ,

which is polynomial in n and ε−1 for m constant. Thus we can list S1 in polynomial
time.

If 2 ≤ h ≤ ν, we use the results from the computation on column (h − 1) to
compute |Σt,c(h),b|. Let t̂ denote an element of Sh−1. Then the dynamic programming
recurrence is

|Σt,c(h),b| =
∑

t̂∈Sh−1:(t−bh)≤t̂≤t

|Σt̂,c(h−1),b|, (6)

since there is a unique extension to column h with values xih = ti − t̂i provided these
satisfy 0 ≤ xih ≤ bih. Therefore we can use the |Σt̂,c(h−1),b| values constructed for
column (h− 1) to compute |Σt,c(h),b| for column h.

We now bound the running time of the dynamic programming algorithm. First
we bound the number of possible t ∈ Sh. We have bij < n2mβ for all i ∈ [m], j ∈ [ν].
For any i ∈ [m − 1], min{ri,

∑h
j=1 bij} is an upper bound on ti, for any t ∈ Sh.

Therefore any t ∈ Sh must have ti < n2mβ+1, since h ∈ [n].
Therefore the cardinality of Sh can be bounded by

|Sh| ≤
m−1∏
i=1

(
h∑

j=1

bij + 1) ≤
m−1∏
i=1

n2mβ+1 = n(m−1)(2mβ+1).

Thus Sh can be listed in O(n(m−1)(2mβ+1)) time, which is polynomial in n and ε−1.
For each t ∈ Sh, we can calculate |Σt,c(h),b| using equation (6). There are at most
2n(m−1)(2mβ+1) elements of Sh, and for each such element we sum over at most
2n(m−1)(2mβ+1) elements of Sh−1. Therefore the hth phase of the dynamic program-
ming algorithm takes O(n2(m−1)(2mβ+1)) time. There are at most n phases of dynamic
programming. Therefore the running time of the entire algorithm is bounded above
by O(n2(m−1)(2mβ+1)+1), which is polynomial in n and ε−1.

If ν = n, then we are done. Otherwise, by definition of β, and by the tightness of
the cell bounds, ν < n− 1. For ν < n− 1 we obtain a polynomial-sized set of weights
{wt : t ∈ Sν} with wt = |Σt,c(ν),b|, such that

|Σr,c,b| =
∑
t∈Sν

wt|Σs,c(ν),b|. (7)

Phase 2: Compute Wt = |Σs(σ),∗,b| · |ΣS′ | for every t ∈ Sν .
We assume that there is at least one cell with bij > n2mβ . Then, since the original

cell bounds are tight, there is some j′ 6= j such that bij′ ≥ n2mβ−1. By definition
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of p, both j and j′ are large columns. So there are at least two large columns, i.e.,
ν ≤ n− 2.

For the remainder of this section, we omit the ν from c(ν), b(ν), since we are
always working with the large columns [n] \ [ν]. For each t ∈ Sν , we compute the
total number of assignments to the small rows and small cells of the table on the large
columns with row sums s = r − t. We will use dynamic programming to count the
following quantity exactly:

|Σs(σ),∗,b| =
σ∏

i=1

|Σ(i)
si,∗,b|, (8)

where Σ(i)
si,∗,b =def { (zν+1, . . . , zn) :

∑n
j=ν+1 zj = si, 0 ≤ zj ≤ bij}.

For every i ∈ [σ], we compute |Σ(i)
si,∗,b| by dynamic programming. For ν + 1 ≤

h ≤ n, and for every s′i ≤ si, let Σ(i,h)
s′i,∗,b =def { (zν+1, . . . , zh) :

∑h
j=ν+1 zj = s′i, 0 ≤

zj ≤ bij}. Define |Σ(i,ν)
s′i,∗,b| = 1. Then we use the following recurrence to compute

|Σ(i)
si,∗,b| = |Σ(i,n)

si,∗,b|:

|Σ(i,h+1)
s′i,∗,b | =

min{s′i,bi,h+1}∑
xh+1=0

|Σ(i,h)
(s′i−xh+1),∗,b|. (9)

Every row i ∈ [σ] satisfies ri < mnq+1, so si < mnq+1. Therefore we consider at most
mnq+1 values for s′i. For each s′i, we consider at most bi,h+1 + 1 ≤ mnq+1 values for
xh+1. Therefore computing |Σ(i,h)

s′i,∗,b| for a single value of s′i requires O(nq+1) time. For

given h, we compute |Σ(i,h)
s′i,∗,b| for all s′i ≤ si in O(n2(q+1)) time. There are O(n) values

of h, so we compute |Σ(i)
si,∗,b| in O(n2q+3) time. We can compute |Σ(i)

si,∗,b| for all i ∈ [σ]
in O(n2q+3) time, since σ = O(1). Thus we can compute |Σs(σ),∗,b| in O(n2q+3) time,
using (8).

Finally, consider the set of small cells S′ ⊆ R. For every (i, j) ∈ S′, we have
bij < nq. Thus there are at most bij + 1 ≤ nq feasible values for each cell (i, j) ∈ S′.
To determine |ΣS′ |, we treat each (i, j) ∈ S′ separately. It can be computed in O(mn)
time as:

|ΣS′ | =
∏

(i,j)∈S′

(bij + 1).

Hence we can compute Wt = |Σs(σ),∗,b| · |ΣS′ | for all t ∈ Sν .

3.3. Volume Estimation. We state here some facts which were used earlier to
show that our algorithm is an fpras. Let N be the network whose flows correspond
to elements of Σr,c,b. Consider any x ∈ G, and let N x be its residual network. Any
small cell (i, j) ∈ S′ in R will have been assigned a value by x. We refer to these as
blocked cells, the remainder being unblocked. By the definitions of small rows, small
cells and the small columns, it seems likely that the values assigned by x should not
greatly influence the number of flows in N x. We will prove that this is in fact the case.
We first prove the existence of a “central” rational flow in N x. For any component
C of N x, let TC = BC ] DC be a maximum spanning tree on C. Let T ′ =

⋃
C TC ,

B′ =
⋃

C BC and D′ =
⋃

C DC .
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Theorem 16. Let f be the internal flow on N defined in (3). Suppose x ∈ G
yields residual network N x. Then there is a rational flow gx in N x such that

gx
ij ∈ fij ± (m + 1)np+1, (i, j) ∈ B′,

gx
ij ∈ fij ±m2nq+1, (i, j) ∈ D′,

gx
ij = fij , (i, j) ∈ R \ T ′.

Also, the tight bounds for any cell (i, j) in N x satisfy `ij ≤ gx
ij − bij/4mn and b′ij ≥

gx
ij + bij/4mn.

Proof. Let T = B ] D be the original spanning tree for N . Suppose C is a
component ofN x. We first show that there is a maximum spanning tree TC = BC]DC

in C of unblocked cells, constructed using the original bij , such that bij > np/m for
every (i, j) ∈ DC and bij > nr for every (i, j) ∈ BC .

Let IC be the set of rows and JC the set of columns spanned by C, so BC is a
subtree of TC spanning IC . All cells in DC satisfy bij > np/m, since cj > np for all
j ∈ JC and the bij were tight for N x. Only cells with bij < np have been removed
from N , so all cells in the subtree B′ = C∩B of T spanning IC remain, since r > p+3.
Therefore every cell (i, j) ∈ BC also satisfies bij > nr. Otherwise we can obtain a
spanning tree of greater weight by removing any (i, j) ∈ BC with bij < nr from TC ,
and reconnecting the resulting components by the appropriate edge of B′.

Let f be the internal flow defined in (3), having slack bij/2mn on every cell
(i, j) ∈ A. We modify f to obtain a rational flow gx in N so that gx

ij = xij for
all (i, j) /∈ R \ S and every cell (i, j) ∈ R \ S has slack at least bij/4mn.

Let C be any component of N x. The residual row and column sums of the table
on IC × JC depend on x. For every i ∈ IC , the residual row sums r̂i(x) satisfy

ri ≥ r̂i(x) = ri −
ν∑

j=1

xij −
∑

j>ν,(i,j)∈S

xij

≥ ri −
ν∑

j=1

bij −
∑

j>ν,(i,j)∈S

bij

> ri − νnp − (n− ν)nq

≥ ri − np+1.

The residual sums ĉj for columns j ∈ JC satisfy

cj ≥ ĉj(x) = cj −
σ∑

i=1

xij −
∑

i>σ,(i,j)∈S

xij

≥ cj −
σ∑

i=1

bij −
∑

i>σ,(i,j)∈S

bij

> cj − σnq − (m− σ)mnq+1

≥ cj −m2nq+1.

Clearly |r̂i(x) − r̂i(f)| ≤ np+1 for i ∈ [m] \ [σ] and |ĉj(x) − ĉj(f)| ≤ m2nq+1 for
j ∈ [n] \ [ν].

Suppose that we modify f to obtain a new function fx, as follows:

fx
ij =

{
xij for (i, j) /∈ R \ S

fij for (i, j) ∈ R \ S
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The function fx is no longer even a rational flow in N . However, we will modify fx

to produce a rational flow gx, by changing only the cells in the trees TC . First we
“correct” the column sums for fx in JC . Let j ∈ JC be such that

∑m
i=1 fx

ij 6= cj . Let
i∗ ∈ [m] be such that bi∗j = maxi∈IC

bij . We may assume that (i∗, j) ∈ TC . Then
bi∗j ≥ np/m, so

bi∗j

2mn
≥ np−1

2m2
=

nq+β/2−1

2m2
≥ 32m6nq+2

2m2
= 16m4nq+2.

By definition of f, 1
2mnbi∗j ≤ fx

i∗j = fi∗j ≤ (1 − 1
2mn )bi∗j . Thus we can add or

subtract 16m4nq+2 to fx
i∗,j and the resulting value satisfies the cell bounds. Since

|ĉj(x) − ĉj(f)| ≤ m2nq+1, we can add ĉj(x) − ĉj(f) to fx
i∗j and maintain the cell

bounds for (i∗, j). Since m2nq+1 ≤ bi∗j/32m3n2, the resulting value in cell (i, j) will
still have slack of at least bi∗j/3mn. Define hx

i∗j = fi∗j + ĉj(x) − ĉj(f), hx
ij = fij

(i 6= i∗). Then
m∑

i=1

hx
ij =

σ∑
i=1

xij +
m∑

i=σ+1

fij + ĉj(x)− ĉj(f)

= cj − ĉj(x) +
m∑

i=σ+1

fij + ĉj(x)− ĉj(f)

= cj +
m∑

i=σ+1

fij −
(
cj −

σ∑
i=1

fij

)
= cj ,

and column total j is satisfied. Note that we corrected column sum j by changing
one cell in column j. Therefore, we can correct each of the column sums for all C and
j ∈ JC independently. Letting T ′ =

⋃
C TC , we obtain a new function hx satisfying

hx
ij = xij , (i, j) /∈ R \ S,

hx
ij = fij , (i, j) ∈ R \ (S ∪ T ′),

hx
ij ∈ fij ±m2nq+1, (i, j) ∈ T ′

with column sums cj (j ∈ [n]) and row sums ri (i ∈ [σ]). The row sums for hx lie in
ri ± np+1 (i ∈ [m] \ [σ]), since

ri − νnp − (n− ν)m2nq+1 ≤
n∑

j=1

hx
ij

≤ ri + νnp + (n− ν)m2nq+1.

Now we correct the row sums for all C and i ∈ IC . Define JC(i) = {j ∈ JC : (i, j) /∈
S′} and IC(j) = {i ∈ IC : (i, j) /∈ S′}. Let

erri(hx) =
∑

j∈JC(i)

hx
ij − r̂i(x)

be the signed error in row i ∈ JC . Note that∑
i∈IC

erri(hx) =
∑
i∈IC

∑
j∈JC(i)

hx
ij −

∑
i∈IC

r̂i(x)

=
∑

j∈JC

ĉj(x)−
∑
i∈IC

r̂i(x) = 0.
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We now correct the row totals by considering pairs of rows i, i′ such that erri > 0 and
erri′ < 0. Let ϕ = min{erri,−erri′}, so 0 < ϕ ≤ np+1. Let Pi,i′ be the unique path
in TC from i to i′. Observe that Pi,i′ ⊆ BC for every i, i′ ∈ IC , and bkj ≥ nr for every
(k, j) ∈ BC .

We modify hx in the cells of Pi,i′ by routing flow ϕ from i to i′. Note that Pi,i′

has odd length, since N x is bipartite. List the cells of Pi,i′ in order of appearance
from i to i′, subtract ϕ from all cells in odd positions in this list and add ϕ to cells in
even positions. The only change to sums over rows or columns are in rows i and i′.
Denote the updated solution by h̃x. Then

erri(h̃x) = erri(hx)− ϕ,

erri′(h̃x) = erri′(hx) + ϕ,

errk(h̃x) = errk(hx) (k 6= i, i′).

Clearly no error is increased in absolute value. Furthermore, either the new error for
row i is zero or the new error for row i′ is zero. Thus the routing exactly corrects
either row i or row i′. We perform this procedure iteratively, at each step choosing a
pair of rows i, i′ such that the sum in row i has positive error and the sum in row i′

is negative. Since we correct at least one row sum at every step, we do this at most m
times to obtain a function gx with row sums r̂i(x) and column sums ĉj(x). The cells
which are altered (the BC cells) during the row-correcting process still satisfy their
cell bounds. We know that the total amount of flow routed from all i to i′ pairs is at
most mnp+1. Therefore no cell changes by more than mnp+1 from hx to gx. During
the correction of column totals, from fx to hx, an element of BC could have been
changed once by at most m2nq+1. Thus the total modification to any BC cell is at
most mnp+1 + m2nq+1, which by definition of β, q, and p is at most (m + 1)np+1.
But the cells in BC have upper bound bij > nr. Hence, using the definitions of p, r,
the slack for gx in cell (i, j) ∈ BC is at least as big as bij/2mn− (m + 1)np+1, which
satisfies

bij/2mn− (m + 1)np+1 ≥ bij/4mn + (nr/4mn− (m + 1)np+1)
≥ bij/4mn.

Thus all cells (i, j) ∈ BC satisfy their cell bounds with slack at least bij/4mn in gx.
The cells in DC are modified only once by at most m2nq+1, in going from from fx

to hx. But these cells have upper bound bij > np/m. We have already shown that
the cells altered in going from fx to hx have slack bij/3mn, therefore these cells will
certainly have slack bij/4mn. No other cell is changed. Thus, for every (i, j) ∈ TC ,
the tight bounds have slack at least bij/4mn in gx. Now we can repeat the argument
of §2 to show that, for any cell (i, j), there are rational flows g′, g′′ in N x with
g′ij = gx

ij + bij/4mn, g′′ij = gx
ij − bij/4mn.

Theorem 17. Let x,y ∈ G, let C be any component of R, and let Px
C , Py

C be the
corresponding flow polytopes. Then

(i) I(Px
C) ∈ (1± ε/2m)vol(Px

C),

(ii) vol(Px
C) ∈ (1± ε/2m)vol(Py

C).
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Proof. (i): From Theorem 16, the tight cell bounds satisfy b′ij − `ij ≥ bij/2mn
for all (i, j) ∈ R \ S. Now, since

b′ij − `ij ≥ bij

2mn
≥ nq

2mn

≥ n6+2 logn(32m6ε−1)

2mn

>
16n3m4

ε
= (mn)3

16m

ε
,

N x
C satisfies the conditions of Theorem 5 with ε = ε/8m. Therefore, since 1−θ ≤ e−θ

and eθ < 1 + 2θ (0 ≤ θ ≤ 1
2 ),

(1− ε/2m)vol(Px
C) ≤ I(Px

C) ≤ (1 + ε/2m)vol(Px
C).

(ii): Observe that Px
C is the set of points z satisfying∑

j∈JC(i) zij = r̂i(x), i ∈ IC ,∑
i∈IC(j) zij = ĉj(x), j ∈ JC ,

0 ≤ zij ≤ bij , (i, j) ∈ C.

(10)

In Theorem 16 we constructed a rational flow gx ∈ Px
C satisfying

1
4mnbij ≤ gx

ij ≤ bij(1− 1
4mn ) for all (i, j) ∈ C,

where the bij are the bounds which were tight for N . They are not necessarily tight
for N x

C , but here we choose to work with the original bounds. Rewriting (10) relative
to gx, by setting Zij = zij − gx

ij for all (i, j) ∈ C, gives∑
j∈JC(i) Zij = 0, i ∈ IC ,∑
i∈IC(j) Zij = 0, j ∈ JC ,

−gx
ij ≤ Zij ≤ bij − gx

ij , (i, j) ∈ C.

(11)

For (i, j) ∈ DC , let I ′C(j) = IC(j) \ {(i, j)}. Now, by eliminating Zij , for (i, j) ∈ TC ,
we get the following full-dimensional representation for (11). (See Schrijver [27, §13].)

−gx
ij ≤

∑
(k,`)∈Pij

Zk` −
∑

(k,`)∈Nij
Zk` ≤ bij − gx

ij , (i, j) ∈ BC ,

−gx
ij ≤ −

∑
k∈I′C(j) Zkj ≤ bij − gx

ij , (i, j) ∈ DC ,

−gx
ij ≤ Zij ≤ bij − gx

ij , (i, j) ∈ C \ TC .

(12)

where (k, `) ∈ Nij if the directed path in TC from row k to column ` traverses arc
(i, j) in the direction i to j, and (k, `) ∈ Pij if the directed path in TC from k to `
traverses (i, j) in the direction j to i.

Similarly, for any other y ∈ G, Py
C is the set of points Z ′ satisfying

−gy
ij ≤

∑
(k,`)∈Pij

Z ′
k` −

∑
(k,`)∈Nij

Z ′
k` ≤ bij − gy

ij , (i, j) ∈ BC ,

−gy
ij ≤ −

∑
k∈I′C(j) Z ′

kj ≤ bij − gy
ij , (i, j) ∈ DC ,

−gy
ij ≤ Z ′

ij ≤ bij − gy
ij , (i, j) ∈ C \ TC .

(13)
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But our construction of gx and gy ensures that gx
ij = fij = g

y
ij for every (i, j) ∈ C\TC .

Z ′
ij = Zij for all (i, j) ∈ C \ TC and (13) can be written as

−gy
ij ≤

∑
(k,`)∈Pij

Zk` −
∑

(k,`)∈Nij
Zk` ≤ bij − gy

ij , (i, j) ∈ BC ,

−gy
ij ≤ −

∑
k∈I′C(j) Zkj ≤ bij − gy

ij , (i, j) ∈ DC ,

−gx
ij ≤ Zij ≤ bij − gx

ij , (i, j) ∈ C \ TC .

(14)

Let ε = ε/4m2n. We now show Px
C ⊆ (1 + ε)Py

C . It follows from (14) that (1 + ε)Py
C

is the set of points Z satisfying

−(1 + ε)gy
ij ≤

∑
(k,`)∈Pij

Zk` −
∑

(k,`)∈Nij
Zk`

≤ (1 + ε)(bij − gy
ij) (i, j) ∈ BC ,

−(1 + ε)gy
ij ≤ −

∑
k∈I′C(j) Zkj ≤ (1 + ε)(bij − gy

ij) (i, j) ∈ DC ,

−(1 + ε)gx
ij ≤ Zij ≤ (1 + ε)(bij − gx

ij) (i, j) ∈ C \ TC .

(15)

We must show that every Z ∈ Px
C satisfies (15). Clearly Z satisfies the inequalities

for C \ TC . Consider the inequalities for DC . For (i, j) ∈ DC , we have gy
ij , g

x
ij ∈

fij±m2nq+1 by Theorem 16, and therefore |gx
ij−gy

ij | ≤ 2m2nq+1. Therefore, we must
show that ε min{bij − gy

ij , g
y
ij} ≥ 2m2nq+1. We have min{bij − gy

ij , g
y
ij} ≥ bij/4mn

from Theorem 16 and we know that bij > np/m for all (i, j) ∈ DC . Thus

ε min{bij − gy
ij , g

y
ij} ≥

εnp

4m2n
=

εnp−2

16m4

=
εnq+1+logn(32m6ε−1)

16m4

= 2m2nq+1,

as required. Finally, consider the cells (i, j) ∈ BC . We have gy
ij , g

x
ij ∈ fij ± (m +

1)np+1 by Theorem 16, so |gy
ij − gx

ij | ≤ 2(m + 1)np+1. Therefore, we must show that
ε min{bij − gy

ij , g
y
ij} ≥ 2(m + 1)np+1. We have min{bij − gy

ij , g
y
ij} ≥ bij/4mn from

Theorem 16 and we know that bij > nr for all (i, j) ∈ BC . Thus

ε min{bij − gy
ij , g

y
ij} ≥ εnr

4mn
=

εnr−2

16m3

≥ εnp+1+logn(32m6ε−1)

16m3

= 2m3np+1 > 2(m + 1)np+1.

We have now shown that Px
C ⊆ (1 + ε)Py

C . Therefore

vol(Px
C) ≤ vol((1 + ε)Py

C)
≤ (1 + ε)dC vol(Py

C),

where dC = (|IC | − 1)(|JC | − 1) − |S′| ≤ mn is the dimension of Px
C (and Py

C).
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Therefore

vol(Px
C) ≤ (1 + ε)mnvol(Py

C)

=
(
1 +

ε

4m2n

)mn

vol(Py
C)

≤
(
1 +

ε

2m

)
vol(Py

C),

using (1 + θ/κ)κ ≤ 1 + 2θ for 0 ≤ θ ≤ 1
2 and κ > 0.

Switching the roles of x and y, we also have vol(Py
C) ≤ (1 + ε)mnvol(Px

C). Then
it follows, using (1 + θ/κ)−κ ≥ 1− 2θ for 0 ≤ θ ≤ 1

2 and κ > 0, that

vol(Px
C) ≥ (1 + ε)−mnvol(Py

C)

≥
(
1− ε

2m

)
vol(Py

C).
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