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Abstract. The j-State General Markov Model of evolution (due to Steel) is a stochastic model
concerned with the evolution of strings over an alphabet of size j. In particular, the Two-State
General Markov Model of evolution generalises the well-known Cavender-Farris-Neyman model of
evolution by removing the symmetry restriction (which requires that the probability that a ‘0’ turns
into a ‘1’ along an edge is the same as the probability that a ‘1’ turns into a ‘0’ along the edge).
Farach and Kannan showed how to PAC-learn Markov Evolutionary Trees in the Cavender-Farris-
Neyman model provided that the target tree satisfies the additional restriction that all pairs of leaves
have a sufficiently high probability of being the same. We show how to remove both restrictions and
thereby obtain the first polynomial-time PAC-learning algorithm (in the sense of Kearns et al.) for
the general class of Two-State Markov Evolutionary Trees.
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1. Introduction. The j-State General Markov Model of Evolution was proposed
by Steel in 1994 [14]. The model is concerned with the evolution of strings (such as
DNA strings) over an alphabet of size j. The model can be described as follows. A
j-State Markov Evolutionary Tree consists of a topology (a rooted tree, with edges
directed away from the root), together with the following parameters. The root of
the tree is associated with j probabilities ρ0, . . . , ρj−1 which sum to 1, and each
edge of the tree is associated with a stochastic transition matrix whose state space
is the alphabet. A probabilistic experiment can be performed using the Markov
Evolutionary Tree as follows: The root is assigned a letter from the alphabet according
to the probabilities ρ0, . . . , ρj−1. (Letter i is chosen with probability ρi.) Then the
letter propagates down the edges of the tree. As the letter passes through each edge,
it undergoes a probabilistic transition according to the transition matrix associated
with the edge. The result is a string of length n which is the concatenation of the
letters obtained at the n leaves of the tree. A j-State Markov Evolutionary Tree
thus defines a probability distribution on length-n strings over an alphabet of size j.
(The probabilistic experiment described above produces a single sample from the
distribution.1)

To avoid getting bogged down in detail, we work with a binary alphabet. Thus,
we will consider Two-State Markov Evolutionary Trees.

Following Farach and Kannan [9], Erdös, Steel, Székely and Warnow [7, 8] and
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Ambainis, Desper, Farach and Kannan [2], we are interested in the problem of learning
a Markov Evolutionary Tree, given samples from its output distribution. Following
Farach and Kannan and Ambainis et al., we consider the problem of using polynomi-
ally many samples from a Markov Evolutionary Tree M to “learn” a Markov Evolu-
tionary Tree M ′ whose distribution is close to that of M . We use the variation distance
metric to measure the distance between two distributions, D and D′, on strings of
length n. The variation distance between D and D′ is

∑
s∈{0,1}n |D(s) − D′(s)|. If

M and M ′ are n-leaf Markov Evolutionary Trees, we use the notation var(M, M ′)
to denote the variation distance between the distribution of M and the distribution
of M ′.

We use the “Probably Approximately Correct” (PAC) distribution learning model
of Kearns, Mansour, Ron, Rubinfeld, Schapire and Sellie [11]. Our main result is
the first polynomial-time PAC-learning algorithm for the class of Two-State Markov
Evolutionary Trees (which we will refer to as METs):

Theorem 1. Let δ and ǫ be any positive constants. If our algorithm is given
poly(n, 1/ǫ, 1/δ) samples from any MET M with any n-leaf topology T , then with prob-
ability at least 1−δ, the MET M ′ constructed by the algorithm satisfies var(M, M ′) ≤
ǫ.

Interesting PAC-learning algorithms for biologically important restricted classes
of METs have been given by Farach and Kannan in [9] and by Ambainis, Desper,
Farach and Kannan in [2]. These algorithms (and their relation to our algorithm)
will be discussed more fully in Section 1.1. At this point, we simply note that these
algorithms only apply to METs which satisfy the following restrictions.

Restriction 1: All transition matrices are symmetric (the probability of a
‘1’ turning into a ‘0’ along an edge is the same as the probability of a ‘0’
turning into a ‘1’.)
Restriction 2: For some positive constant α, every pair of leaves (x, y)
satisfies Pr(x 6= y) ≤ 1/2 − α.

We will explain in Section 1.1 why the restrictions significantly simplify the problem
of learning Markov Evolutionary Trees (though they certainly do not make it easy!)
The main contribution of our paper is to remove the restrictions.

While we have used variation distance (L1 distance) to measure the distance be-
tween the target distribution D and our hypothesis distribution D′, Kearns et al. for-
mulated the problem of learning probability distributions in terms of the Kullback-
Leibler divergence distance from the target distribution to the hypothesis distribution.
This distance is defined as the sum over all length-n strings s of D(s) log(D(s)/D′(s)).
Kearns et al. point out that the KL distance gives an upper bound on variation dis-
tance, in the sense that the KL distance from D to D′ is Ω(var(D,D′)2). Hence if a
class of distributions can be PAC-learned using KL distance, it can be PAC-learned us-
ing variation distance. We justify our use of the variation distance metric by showing
that the reverse is true. In particular, we prove the following lemma in the Appendix.

Lemma 2. A class of probability distributions over the domain {0, 1}n that is
PAC-learnable under the variation distance metric is PAC-learnable under the KL-
distance measure.

The lemma is proved using a method related to the ǫ-Bayesian shift of Abe and
Warmuth [3]. Note that the result requires a discrete domain of support for the target
distribution, such as the domain {0, 1}n which we use here.

The rest of this section is organised as follows: Subsection 1.1 discusses previous
work related to the General Markov Model of Evolution, and the relationship between
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this work and our work. Subsection 1.2 gives a brief synopsis of our algorithm for
PAC-learning Markov Evolutionary Trees. Subsection 1.3 discusses an interesting con-
nection between the problem of learning Markov Evolutionary Trees and the problem
of learning mixtures of Hamming balls, which was studied by Kearns et al. [11].

1.1. Previous Work and Its Relation to Our Work. The Two-State Gen-
eral Markov Model [14] which we study in this paper is a generalisation of the
Cavender-Farris-Neyman Model of Evolution [5, 10, 13]. Before defining the Cavender-
Farris-Neyman Model, let us return to the Two-State General Markov Model. We
will fix attention on the particular two-state alphabet {0, 1}. Thus, the stochastic
transition matrix associated with edge e is simply the matrix

(
1 − e0 e0

e1 1 − e1

)
,

where e0 denotes the probability that a ‘0’ turns into a ‘1’ along edge e and e1 denotes
the probability that a ‘1’ turns into a ‘0’ along edge e. The Cavender-Farris-Neyman
Model is simply the special case of the Two-State General Markov Model in which
the transition matrices are required to be symmetric. That is, it is the special case of
the Two-State General Markov Model in which Restriction 1 (from page 2) holds (so
e0 = e1 for every edge e).

We now describe past work on learning Markov Evolutionary Trees in the General
Markov Model and in the Cavender-Farris-Neyman Model. Throughout the paper,
we will define the weight w(e) of an edge e to be |1 − e0 − e1|.

Steel [14] showed that if a j-State Markov Evolutionary Tree M satisfies (i) ρi > 0
for all i, and (ii) the determinant of every transition matrix is outside of {−1, 0, 1},
then the distribution of M uniquely determines its topology. In this case, he showed
how to recover the topology, given the joint distribution of every pair of leaves. In
the 2-state case, it suffices to know the exact value of the covariances of every pair of
leaves. In this case, he defined the weight Λ(e) of an edge e from node v to node w
to be

Λ(e) =

{
w(e)

√
Pr(v = 0)Pr(v = 1), if w is a leaf, and

w(e)
√

Pr(v=0)Pr(v=1)
Pr(w=0)Pr(w=1) , otherwise.

(1)

Steel observed that these distances are multiplicative along a path and that the dis-
tance between two leaves is equal to their covariance. Since the distances are mul-
tiplicative along a path, their logarithms are additive. Therefore, methods for con-
structing trees from additive distances such as the method of Bandelt and Dress [4]
can be used to reconstruct the topology. Steel’s method does not show how to recover
the parameters of a Markov Evolutionary Tree, even when the exact distribution is
known and j = 2. In particular, the quantity that he obtains for each edge e is a one-
dimensional distance rather than a two-dimensional vector giving the two transition
probabilities e0 and e1. Our method shows how to recover the parameters exactly,
given the exact distribution, and how to recover the parameters approximately (well
enough to approximate the distribution), given polynomially-many samples from M .

Farach and Kannan [9] and Ambainis, Desper, Farach and Kannan [2] worked pri-
marily in the special case of the Two-State General Markov Model satisfying the two
restrictions on Page 2. Farach and Kannan’s paper was a breakthrough, because prior
to their paper nothing was known about the feasibility of reconstructing Markov Evo-
lutionary Trees from samples. For any given positive constant α, they showed how to
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PAC-learn the class of METs which satisfy the two restrictions. However, the number
of samples required is a function of 1/α, which is taken to be a constant. Ambainis et
al. improved the bounds given by Farach and Kannan to achieve asymptotically tight
upper and lower bounds on the number of samples needed to achieve a given varia-
tion distance. These results are elegant and important. Nevertheless, the restrictions
that they place on the model do significantly simplify the problem of learning Markov
Evolutionary Trees. In order to explain why this is true, we explain the approach
of Farach et al.: Their algorithm uses samples from a MET M , which satisfies the
restrictions above, to estimate the “distance” between any two leaves. (The distance
is related to the covariance between the leaves.) The authors then relate the distance
between two leaves to the amount of evolutionary time that elapses between them.
The distances are thus turned into times. Then the algorithm of [1] is used to ap-
proximate the inter-leaf evolutionary times with times which are close, but form an
additive metric, which can be fitted onto a tree. Finally, the times are turned back
into transition probabilities. The symmetry assumption is essential to this approach
because it is symmetry that relates a one-dimensional quantity (evolutionary time)
to an otherwise two-dimensional quantity (the probability of going from a ‘0’ to a
‘1’ and the probability of going from a ‘1’ to a ‘0’). The second restriction is also
essential: If the probability that x differs from y were allowed to approach 1/2, then
the evolutionary time from x to y would tend to ∞. This would mean that in order
to approximate the inter-leaf times accurately, the algorithm would have to get the
distance estimates very accurately, which would require many samples. Ambainis
et al. [2] generalised their results to a symmetric version of the j-state evolutionary
model, subject to the two restrictions above.

Erdös, Steel, Székely and Warnow [7, 8] also considered the reconstruction of
Markov Evolutionary Trees from samples. Like Steel [14] and unlike our paper or
the papers of Farach et al. [9, 2], Erdös et al. were only interested in reconstructing
the topology of a MET (rather than its parameters or distribution), and they were
interested in using as few samples as possible to reconstruct the topology. They
showed how to reconstruct topologies in the j-state General Markov Model when the
Markov Evolutionary Trees satisfy (i) Every root probability is bounded above 0, (ii)
every transition probability is bounded above 0 and below 1/2, and (iii) for positive
quantities λ and λ′, the determinant of the transition matrix along each edge is
between λ and 1−λ′. The number of samples required is polynomial in the worst case,
but is only polylogarithmic in certain cases including the case in which the MET is
drawn uniformly at random from one of several (specified) natural distributions. Note
that restriction (iii) of Erdös et al. is weaker than Farach and Kannan’s Restriction 2
(from Page 2). However, Erdös et al. only show how to reconstruct the topology (thus
they work in a restricted case in which the topology can be uniquely constructed
using samples). They do not show how to reconstruct the parameters of the Markov
Evolutionary Tree, or how to approximate its distribution.

1.2. A Synopsis of our Method. In this paper, we provide the first polynomial-
time PAC-learning algorithm for the class of Two-State Markov Evolutionary Trees
(METs). Our algorithm works as follows: First, using samples from the target MET,
the algorithm estimates all of the pairwise covariances between leaves of the MET.
Second, using the covariances, the leaves of the MET are partitioned into “related
sets” of leaves. Essentially, leaves in different related sets have such small covariances
between them that it is not always possible to use polynomially many samples to
discover how the related sets are connected in the target topology. Nevertheless, we
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show that we can closely approximate the distribution of the target MET by approx-
imating the distribution of each related set closely, and then joining the related sets
by “cut edges”. The first step, for each related set, is to discover an approximation
to the correct topology. Since we do not restrict the class of METs which we con-
sider, we cannot guarantee to construct the exact induced topology (in the target
MET). Nevertheless we guarantee to construct a good enough approximation. The
topology is constructed by looking at triples of leaves. We show how to ensure that
each triple that we consider has large inter-leaf covariances. We derive quadratic
equations which allow us to approximately recover the parameters of the triple, using
estimates of inter-leaf covariances and estimates of probabilities of particular outputs.
We compare the outcomes for different triples and use the comparisons to construct
the topology. Once we have the topology, we again use our quadratic equations to
discover the parameters of the tree. As we show in Section 2.4, we are able to prevent
the error in our estimates from accumulating, so we are able to guarantee that each
estimated parameter is within a small additive error of the “real” parameter in a (nor-
malised) target MET. From this, we can show that the variation distance between
our hypothesis and the target is small.

1.3. Markov Evolutionary Trees and Mixtures of Hamming Balls. A
Hamming ball distribution [11] over binary strings of length n is defined by a center
(a string c of length n) and a corruption probability p. To generate an output from
the distribution, one starts with the center, and then flips each bit (or not) according
to an independent Bernoulli experiment with probability p. A linear mixture of j
Hamming balls is a distribution defined by j Hamming ball distributions, together
with j probabilities ρ1, . . . , ρj which sum to 1 and determine from which Hamming
ball distribution a particular sample should be taken. For any fixed j, Kearns et al.
give a polynomial-time PAC-learning algorithm for a mixture of j Hamming balls,
provided all j Hamming balls have the same corruption probability2 .

A pure distribution over binary strings of length n is defined by n probabilities,
λ1, . . . , λn. To generate an output from the distribution, the i’th bit is set to ‘0’
independently with probability λi, and to ‘1’ otherwise. A pure distribution is a
natural generalisation of a Hamming ball distribution. Clearly, every linear mixture
of j pure distributions can be realized by a j-state MET with a star-shaped topology.
Thus, the algorithm given in this paper shows how to learn a linear mixture of any
two pure distributions. Furthermore, a generalisation of our result to a j-ary alphabet
would show how to learn any linear mixture of any j pure distributions.

2. The Algorithm. Our description of our PAC-learning algorithm and its anal-
ysis require the following definitions. For positive constants δ and ǫ, the input to the
algorithm consists of poly(n, 1/ǫ, 1/δ) samples from a MET M with an n-leaf topology
T . We will let ǫ1 = ǫ/(20n2), ǫ2 = ǫ1/(4n3), ǫ3 = ǫ42/26, ǫ4 = ǫ1/(4n), ǫ5 = ǫ2ǫ4/210,
and ǫ6 = ǫ5ǫ

3
2/27. We have made no effort to optimise these constants. However, we

state them explicitly so that the reader can verify below that the constants can be
defined consistently. We define an ǫ4-contraction of a MET with topology T ′ to be
a tree formed from T ′ by contracting some internal edges e for which Λ(e) > 1 − ǫ4,

2The kind of PAC-learning that we consider in this paper is generation. Kearns et al. also
show how to do evaluation for the special case of the mixture of j Hamming balls described above.
Using the observation that the output distributions of the subtrees below a node of a MET are
independent, provided the bit at that node is fixed, we can also solve the evaluation problem for
METs. In particular, we can calculate (in polynomial time) the probability that a given string is
output by the hypothesis MET.
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where Λ(e) is the edge-distance of e as defined by Steel [14] (see equation 1). If x
and y are leaves of the topology T then we use the notation cov(x, y) to denote the
covariance of the indicator variables for the events “the bit at x is 1” and “the bit at
y is 1”. Thus,

cov(x, y) = Pr(xy = 11) − Pr(x = 1)Pr(y = 1).(2)

We will use the following observations.

Observation 3. If MET M ′ has topology T ′ and e is an internal edge of T ′

from the root r to node v and T ′′ is a topology that is the same as T ′ except that
v is the root (so e goes from v to r) then we can construct a MET with topology
T ′′ which has the same distribution as M ′. To do this, we simply set Pr(v = 1)
appropriately (from the distribution of M ′). If Pr(v = 1) = 0 we set e0 to be Pr(r = 1)
(from the distribution of M ′). If Pr(v = 1) = 1 we set e1 to be Pr(r = 0) (from
the distribution of M ′). Otherwise, we set e0 = Pr(r = 1)(old e1)/ Pr(v = 0) and
e1 = Pr(r = 0)(old e0)/ Pr(v = 1).

Observation 4. If MET M ′ has topology T ′ and v is a degree-2 node in T ′ with
edge e leading into v and edge f leading out of v and T ′′ is a topology which is the
same as T ′ except that e and f have been contracted to form edge g then there is a
MET with topology T ′′ which has the same distribution as M ′. To construct it, we
simply set g0 = e0(1 − f1) + (1 − e0)f0 and g1 = e1(1 − f0) + (1 − e1)f1.

Observation 5. If MET M ′ has topology T ′ then there is a MET M ′′ with
topology T ′ which has the same distribution on its leaves as M ′ and has every internal
edge e satisfy e0 + e1 ≤ 1.

Proof of Observation 5. We will say that an edge e is “good” if e0 + e1 ≤ 1.
Starting from the root we can make all edges along a path to a leaf good, except
perhaps the last edge in the path. If edge e from u to v is the first non-good edge in
the path we simply set e0 to 1− (old e0) and e1 to 1− (old e1). This makes the edge
good but it has the side effect of interchanging the meaning of “0” and “1” at node v.
As long as we interchange “0” and “1” an even number of times along every path we
will preserve the distribution at the leaves. Thus, we can make all edges good except
possibly the last one, which we use to get the parity of the number of interchanges
correct.

We will now describe the algorithm. In subsection 2.6, we will prove that with
probability at least 1 − δ, the MET M ′ that it constructs satisfies var(M, M ′) ≤ ǫ.
Thus, we will prove Theorem 1.

2.1. Step 1: Estimate the covariances of pairs of leaves. For each pair
(x, y) of leaves, obtain an “observed” covariance ĉov(x, y) such that, with probability
at least 1 − δ/3, all observed covariances satisfy

ĉov(x, y) ∈ [cov(x, y) − ǫ3, cov(x, y) + ǫ3].

Lemma 6. Step 1 requires only poly(n, 1/ǫ, 1/δ) samples from M .

Proof. Consider leaves x and y and let p denote Pr(xy = 11). By a Chernoff
bound (see [12]), after k samples the observed proportion of outputs with xy = 11 is
within ±ǫ3/4 of p, with probability at least 1 − 2 exp(−kǫ23/23). For each pair (x, y)
of leaves, we estimate Pr(xy = 11), Pr(x = 1) and Pr(y = 1) within ±ǫ3/4. From
these estimates, we can calculate ĉov(x, y) within ±ǫ3 using Equation 2.
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2.2. Step 2: Partition the leaves of M into related sets. Consider the
following leaf connectivity graph whose nodes are the leaves of M . Nodes x and y
are connected by a “positive” edge if ĉov(x, y) ≥ (3/4)ǫ2 and are connected by a
“negative” edge if ĉov(x, y) ≤ −(3/4)ǫ2. Each connected component in this graph
(ignoring the signs of edges) forms a set of “related” leaves. For each set S of related
leaves, let s(S) denote the leaf in S with smallest index. METs have the property
that for leaves x, y and z, cov(y, z) is positive iff cov(x, y) and cov(y, z) have the
same sign. (To see this, use the following equation, which can be proved by algebraic
manipulation from Equation 2.)

cov(x, y) = Pr(v = 1)Pr(v = 0)(1 − α0 − α1)(1 − β0 − β1),(3)

where v is taken to be the least common ancestor of x and y and α0 and α1 are the
transition probabilities along the path from v to x and β0 and β1 are the transition
probabilities along the path from v to y. Therefore, as long as the observed covariances
are as accurate as stated in Step 1, the signs on the edges of the leaf connectivity graph
partition the leaves of S into two sets S1 and S2 in such a way that s(S) ∈ S1, all
covariances between pairs of leaves in S1 are positive, all covariances between pairs of
leaves in S2 are positive, and all covariances between a leaf in S1 and a leaf in S2 are
negative.

For each set S of related leaves, let T (S) denote the subtree formed from T by
deleting all leaves which are not in S, contracting all degree-2 nodes, and then rooting
at the neighbour of s(S). Let M(S) be a MET with topology T (S) which has the
same distribution as M on its leaves and satisfies the following.

• Every internal edge e of M(S) has e0 + e1 ≤ 1.(4)

• Every edge e to a node in S1 has e0 + e1 ≤ 1.

• Every edge e to a node in S2 has e0 + e1 ≥ 1.

Observations 3, 4 and 5 guarantee that M(S) exists.
Observation 7. As long as the observed covariances are as accurate as stated

in Step 1 (which happens with probability at least 1− δ/3), then for any related set S
and any leaf x ∈ S there is a leaf y ∈ S such that |cov(x, y)| ≥ ǫ2/2.

Observation 8. As long as the observed covariances are as accurate as stated
in Step 1 (which happens with probability at least 1− δ/3), then for any related set S
and any edge e of T (S) there are leaves a and b which are connected through e and
have |cov(a, b)| ≥ ǫ2/2.

Observation 9. As long as the observed covariances are as accurate as stated
in Step 1 (which happens with probability at least 1− δ/3), then for any related set S,
every internal node v of M(S) has Pr(v = 0) ∈ [ǫ2/2, 1 − ǫ2/2].

Proof of Observation 9. Suppose to the contrary that v is an internal node of
M(S) with Pr(v = 0) ∈ [0, ǫ2/2) ∪ (1 − ǫ2/2, 1]. Using Observation 3, we can re-root
M(S) at v without changing the distribution. Let w be a child of v. By equation 3,
every pair of leaves a and b which are connected through (v, w) satisfy |cov(a, b)| ≤
Pr(v = 0)Pr(v = 1) < ǫ2/2. The observation now follows from Observation 8.

Observation 10. As long as the observed covariances are as accurate as stated
in Step 1 (which happens with probability at least 1− δ/3), then for any related set S,
every edge e of M(S) has w(e) ≥ ǫ2/2.

Proof of Observation 10. This follows from Observation 8 using Equation 3.
(Recall that w(e) = |1 − e0 − e1|.)
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2.3. Step 3: For each related set S, find an ǫ4-contraction T ′(S) of T (S).
In this section, we will assume that the observed covariances are as accurate as stated
in Step 1 (this happens with probability at least 1 − δ/3). Let S be a related set.
With probability at least 1 − δ/(3n) we will find an ǫ4-contraction T ′(S) of T (S).
Since there are at most n related sets, all ǫ4-contractions will be constructed with
probability at least 1 − δ/3. Recall that an ǫ4-contraction of M(S) is a tree formed
from T (S) by contracting some internal edges e for which Λ(e) > 1 − ǫ4. We start
with the following observation, which will allow us to redirect edges for convenience.

Observation 11. If e is an internal edge of T (S) then Λ(e) remains unchanged
if e is redirected as in Observation 3.

Proof. The observation can be proved by algebraic manipulation from Equation 1
and Observation 3. Note (from Observation 9) that every endpoint v of e satisfies
Pr(v = 0) ∈ (0, 1). Thus, the redirection in Observation 3 is not degenerate and Λ(e)
is defined.

We now describe the algorithm for constructing an ǫ4-contraction T ′(S) of T (S).
We will build up T ′(S) inductively, adding leaves from S one by one. That is, when we
have an ǫ4-contraction T ′(S′) of a subset S′ of S, we will consider a leaf x ∈ S−S′ and
build an ǫ4-contraction T ′(S′∪{x}) of T (S′∪{x}). Initially, S′ = ∅. The precise order
in which the leaves are added does not matter, but we will not add a new leaf x unless
S′ contains a leaf y such that |ĉov(x, y)| ≥ (3/4)ǫ2. When we add a new leaf x we
will proceed as follows. First, we will consider T ′(S′), and for every edge e′ = (u′, v′)
of T ′(S′), we will use the method in the following section (Section 2.3.1) to estimate
Λ(e′). More specifically, we will let u and v be nodes which are adjacent in T (S′) and
have u ∈ u′ and v ∈ v′ in the ǫ4-contraction T ′(S′). We will show how to estimate
Λ(e). Afterwards (in Section 2.3.2), we will show how to insert x.

2.3.1. Estimating Λ(e). In this section, we suppose that we have a MET M(S′)
on a set S′ of leaves, all of which form a single related set. T (S′) is the topology of
M(S′) and T ′(S′) is an ǫ4-contraction of T (S′). The edge e′ = (u′, v′) is an edge
of T ′(S′). e = (u, v) is the edge of T (S′) for which u ∈ u′ and v ∈ v′. We wish to
estimate Λ(e) within ±ǫ4/16. We will ensure that the overall probability that the
estimates are not in this range is at most δ/(6n).

The proof of the following equations is straightforward. We will typically apply
them in situations in which z is the error of an approximation.

x + z

y − z
=

x

y
+

(
z

y − z

)(
1 +

x

y

)
(5)

1 + z

1 − z
≤ 1 + 4z if z ≤ 1/2(6)

1 − z

1 + z
≥ 1 − 2z if z ≥ 0(7)

Case 1: e′ is an internal edge

We first estimate e0, e1, Pr(u = 0), and Pr(v = 0) within ±ǫ5 of the correct
values. By Observation 9, Pr(u = 0) and Pr(v = 0) are in [ǫ2/2, 1 − ǫ2/2]. Thus, our
estimate of Pr(u = 0) is within a factor of (1 ± 2ǫ5/ǫ2) = (1 ± ǫ42

−9) of the correct
value. Similarly, our estimates of Pr(u = 1), Pr(v = 0) and Pr(v = 1) are within a
factor of (1 ± ǫ42

−9) of the correct values. Now using Equation 1 we can estimate



EVOLUTIONARY TREES CAN BE LEARNED IN POLYNOMIAL TIME 9

Λ(e) within ±ǫ4/16. In particular, our estimate of Λ(e) is at most

(w(e) + 2ǫ5)

√
Pr(v = 0)Pr(v = 1)

Pr(w = 0)Pr(w = 1)

(1 + ǫ42
−9)

(1 − ǫ42−9)

≤ (w(e) + 2ǫ5)

√
Pr(v = 0)Pr(v = 1)

Pr(w = 0)Pr(w = 1)
(1 + ǫ42

−7)

≤ Λ(e) + ǫ4/16.

In the inequalities, we used Equation 6 and the fact that Λ(e) ≤ 1. Similarly, by
Equation 7, our estimate of Λ(e) is at least

(w(e) − 2ǫ5)

√
Pr(v = 0)Pr(v = 1)

Pr(w = 0)Pr(w = 1)

(1 − ǫ42
−9)

(1 + ǫ42−9)

≥ (w(e) − 2ǫ5)

√
Pr(v = 0)Pr(v = 1)

Pr(w = 0)Pr(w = 1)
(1 − ǫ42

−8)

≥ Λ(e) − ǫ4/16.

We now show how to estimate e0, e1, Pr(u = 0) and Pr(v = 0) within ±ǫ5. We
say that a path from node α to node β in a MET is strong if |cov(α, β)| ≥ ǫ2/2. It
follows from Equation 3 that if node γ is on this path then

|cov(γ, β)| ≥ |cov(α, β)|(8)

|cov(α, β)| ≥ |cov(α, γ)| |cov(γ, β)|(9)

We say that a quartet (c, b | a, d) of leaves a, b, c and d is a good estimator of the
edge e = (u, v) if e is an edge of T (S′) and the following hold in T (S′) (see Figure 1).

1. a is a descendent of v.
2. The undirected path from c to a is strong and passes through u then v.
3. The path from u to its descendent b is strong and only intersects the (undi-

rected) path from c to a at node u.
4. The path from v to its descendent d is strong and only intersects the path

from v to a at node v.
We say that (c, b | a, d) is an apparently good estimator of e′ if the following hold in
the ǫ4-contraction T ′(S′).

1. a is a descendent of v′.
2. The undirected path from c to a is strong and passes through u′ then v′.
3. The path from u′ to its descendent b is strong and only intersects the (undi-

rected) path from c to a at node u′.
4. The path from v′ to its descendent d is strong and only intersects the path

from v′ to a at node v′.
Observation 12. If e is an edge of T (S′) and (c, b | a, d) is a good estimator of

e then any leaves x, y ∈ {a, b, c, d} have |cov(x, y)| ≥ (ǫ2/2)
3
.

Proof. The observation follows from Equation 8 and 9 and from the definition of
a good estimator.

Lemma 13. If (c, b | a, d) is a good estimator of e then it can be used (along with
poly(n, 1/ǫ, 1/δ) samples from M(S′)) to estimate e0, e1, Pr(u = 0) and Pr(v = 0)
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u

?
e

v

?
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?
b

c

q0, q1

u

a
?

p0, p1

?
d

Fig. 1. Finding Pr(u = 1), e0 and e1

within ±ǫ5. (If we use sufficiently many samples, then the probability that any of the
estimates is not within ±ǫ5 of the correct value is at most δ/(12n7)).

Proof. Let q0 and q1 denote the transition probabilities from v to a (see Figure 1)
and let p0 and p1 denote the transition probabilities from u to a. We will first show
how to estimate p0, p1, and Pr(u = 1) within ±ǫ6. Without loss of generality (by
Observation 3) we can assume that c is a descendant of u. (Otherwise we can re-root
T (S′) at u without changing the distribution on the nodes or p0 or p1.) Let β be the
path from u to b and let γ be the path from u to c. We now define

cov(b, c, 0) = Pr(abc = 011)Pr(a = 0) − Pr(ab = 01)Pr(ac = 01),(10)

cov(b, c, 1) = Pr(abc = 111)Pr(a = 1) − Pr(ab = 11)Pr(ac = 11).

(These do not quite correspond to the conditional covariances of b and c, but they are
related to these.) We also define

F =
1

2

(
cov(b, c) + cov(b, c, 0)− cov(b, c, 1)

cov(b, c)

)
, and

D = F 2 − cov(b, c, 0)/cov(b, c).

The following equations can be proved by algebraic manipulation from Equation 10,
Equation 2 and the definitions of F and D.

cov(b, c, 0) = Pr(u = 1)Pr(u = 0)(1 − β0 − β1)(1 − γ0 − γ1)p1(1 − p0)(11)

cov(b, c, 1) = Pr(u = 1)Pr(u = 0)(1 − β0 − β1)(1 − γ0 − γ1)p0(1 − p1)

F =
1 + p1 − p0

2
(12)

D =
(1 − p0 − p1)

2

4
(13)

Case 1a: a ∈ S1

In this case, by Equation 4 and by Observation 10, we have 1−p0−p1 > 0. Thus,
by Equation 13, we have

√
D =

1 − p0 − p1

2
.(14)



EVOLUTIONARY TREES CAN BE LEARNED IN POLYNOMIAL TIME 11

Equations 12 and 14 imply

p1 = F −
√

D(15)

p0 = 1 − F −
√

D(16)

Also, since Pr(a = 0) = Pr(u = 1)p1 + (1 − Pr(u = 1))(1 − p0), we have

Pr(u = 1) =
1

2
+

F − Pr(a = 0)

2
√

D
(17)

From these equations, it is clear that we could find p0, p1, and Pr(u = 1) if we
knew Pr(a = 0), cov(b, c), cov(b, c, 0) and cov(b, c, 1) exactly. We now show that with
polynomially-many samples, we can approximate the values of Pr(a = 0), cov(b, c),
cov(b, c, 0) and cov(b, c, 1) sufficiently accurately so that using our approximations and
the above equations, we obtain approximations for p0, p1 and Pr(u = 1) which are
within ±ǫ6. As in the proof of Lemma 6, we can use Equations 2 and 10 to estimate
Pr(a = 0), cov(b, c), cov(b, c, 0) and cov(b, c, 1) within ±ǫ′ for any ǫ′ whose inverse
is at most a polynomial in n and 1/ǫ. Note that our estimate of cov(b, c) will be

non-zero by Observation 12 (as long as ǫ′ ≤ (ǫ2/2)
3
), so we will be able to use it to

estimate F from its definition. Now, using the definition of F and Equation 5, our
estimate of 2F is at most

2F +
3ǫ′

cov(b, c) − 3ǫ′
(1 + 2F ).

By Observation 12, this is at most

2F +
3ǫ′

(ǫ2/2)
3 − 3ǫ′

(1 + 2).(18)

The error is at most ǫ′′ for any ǫ′′ whose is inverse is at most polynomial in n and
1/ǫ. (This is accomplished by making ǫ′ small enough with respect to ǫ2 according to
equation 18.) We can similarly bound the amount that we underestimate F . Now we
use the definition of D to estimate D. Our estimate is at most

(F + ǫ′′)
2 − cov(b, c, 0) − ǫ′

cov(b, c) + ǫ′
.

Using Equation 5, this is at most

D + 2ǫ′′F + ǫ′′2 +
ǫ′

cov(b, c) + ǫ′

(
1 +

cov(b, c, 0)

cov(b, c)

)
.

Once again, by Observation 12, the error can be made within ±ǫ′′′ for any ǫ′′′ whose is
inverse is polynomial in n and 1/ǫ (by making ǫ′ and ǫ′′ sufficiently small). It follows
that our estimate of

√
D is at most

√
D(1 + ǫ′′′/(2D)) and (since Observation 12

gives us an upper bound on the value of D as a function of ǫ2), we can estimate
√

D
within ±ǫ′′′′ for any ǫ′′′′ whose inverse is polynomial in n and 1/ǫ. This implies that
we can estimate p0 and p1 within ±ǫ6. Observation 12 and Equation 3 imply that
w(p) ≥ (ǫ2/2)3. Thus, the estimate for

√
D is non-zero. This implies that we can

similarly estimate Pr(u = 1) within ±ǫ6 using Equation 17.
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Now that we have estimates for p0, p1, and Pr(u = 1) which are within ±ǫ6 of
the correct values, we can repeat the trick to find estimates for q0 and q1 which are
also within ±ǫ6. We use leaf d for this. Observation 4 implies that

e0 =
p0 − q0

1 − q0 − q1
and e1 =

p1 − q1

1 − q0 − q1
.

Using these equations, our estimate of e0 is at most

p0 − q0 + 2ǫ6
1 − q0 − q1 − 2ǫ6

.

Equation 5 and our observation above that w(p) ≥ (ǫ2/2)3 imply that the error is at
most

2ǫ6

(ǫ2/2)
3 − 2ǫ6

(
1 +

p0 − q0

1 − q0 − q1

)
,

which is at most 27ǫ6/ǫ32 = ǫ5. Similarly, the estimate for e0 is at least e0 − ǫ5
and the estimate for e1 is within ±ǫ5 of e1. We have now estimated e0, e1, and
Pr(u = 0) within ±ǫ5. As we explained in the beginning of this section, we can use
these estimates to estimate Λ(e) within ±ǫ4/16.

Case 1b: a ∈ S2

In this case, by Equation 4 and by Observation 10, we have 1−p0−p1 < 0. Thus,
by equation 13, we have

√
D = −

(
1 − p0 − p1

2

)
.(19)

Equations 12 and 19 imply

p1 = F +
√

D(20)

p0 = 1 − F +
√

D(21)

Equation 17 remains unchanged. The process of estimating p0, p1 and Pr(u = 1)
(from the new equations) is the same as for Case 1a. This concludes the proof of
Lemma 13.

Observation 14. Suppose that e′ is an edge from u′ to v′ in T ′(S′) and that e =
(u, v) is the edge in T (S′) such that u ∈ u′ and v ∈ v′. There is a good estimator (c, b |
a, d) of e. Furthermore, every good estimator of e is an apparently good estimator of e′.
(Refer to Figure 2.)

Proof. Leaves c and a can be found to satisfy the first two criteria in the definition
of a good estimator by Observation 8. Leaf b can be found to satisfy the third criterion
by Observation 8 and Equation 8 and by the fact that the degree of u is at least 3 (see
the text just before Equation 4). Similarly, leaf d can be found to satisfy the fourth
criterion. (c, b | a, d) is an apparently good estimator of e′ because only internal edges
of T (S′) can be contracted in the ǫ4-contraction T ′(S′).

Observation 15. Suppose that e′ is an edge from u′ to v′ in T ′(S′) and that
e = (u, v) is an edge in T (S′) such that u ∈ u′ and v ∈ v′. Suppose that (c, b | a, d)
is an apparently good estimator of e′. Let u′′ be the meeting point of c, b and a in
T (S′). Let v′′ be the meeting point of c, a and d in T (S′). (Refer to Figure 3.) Then
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Fig. 2. (c, b | a, d) is a good estimator of e = (u, v) and an apparently good estimator of
e′ = (u′, v′).
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Fig. 3. (c, b | a, d) is an apparently good estimator of e′ = (u′, v′) and a good estimator of
p = (u′′, v′′). Λ(p) ≤ Λ(u, v).

(c, b | a, d) is a good estimator of the path p from u′′ to v′′ in T (S′). Also, Λ(p) ≤ Λ(e).

Proof. The fact that (c, b | a, d) is a good estimator of p follows from the definition
of good estimator. The fact that Λ(p) ≤ Λ(e) follows from the fact that the distances
Λ are multiplicative along a path, and bounded above by 1.

Observations 14 and 15 imply that in order to estimate Λ(e) within ±ǫ4/16, we
need only estimate Λ(e) using each apparently good estimator of e′ and then take
the maximum. By Lemma 13, the failure probability for any given estimator is at
most δ/(12n7), so with probability at least 1− δ/(12n3), all estimators give estimates
within ±ǫ4/16 of the correct values. Since there are at most 2n edges e′ in T ′(S′),
and we add a new leaf x to S′ at most n times, all estimates are within ±ǫ4/16 with
probability at least 1 − δ/(6n).

Case 2: e′ is not an internal edge

In this case v = v′ since v′ is a leaf of T (S′). We say that a pair of leaves (b, c)
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is a good estimator of e if the following holds in T (S′): The paths from leaves v, b

and c meet at u and |cov(v, b)|, |cov(v, c)| and |cov(b, c)| are all at least (ǫ2/2)2. We
say that (b, c) is an apparently good estimator of e′ if the following holds in T ′(S′):
The paths from leaves v, b and c meet at u′ and |cov(v, b)|, |cov(v, c)| and |cov(b, c)|
are all at least (ǫ2/2)

2
. As in the previous case, the result follows from the following

observations.
Observation 16. If (b, c) is a good estimator of e then it can be used (along with

poly(n, 1/ǫ, 1/δ) samples from M(S′)) to estimate e0, e1, and Pr(u = 0) within ±ǫ5.
(The probability that any of the estimates is not within ±ǫ5 of the correct value is at
most δ/(12n3).)

Proof. This follows from the proof of Lemma 13.
Observation 17. Suppose that e′ is an edge from u′ to leaf v in T ′(S′) and that

e = (u, v) is an edge in T (S′) such that u ∈ u′. There is a good estimator (b, c) of e.
Furthermore, every good estimator of e is an apparently good estimator of e′.

Proof. This follows from the proof of Observation 14 and from Equation 9.
Observation 18. Suppose that e′ is an edge from u′ to leaf v in T ′(S′) and that

e = (u, v) is an edge in T (S′) such that u ∈ u′. Suppose that (b, c) is an apparently
good estimator of e′. Let u′′ be the meeting point of b, v and c in T (S′). Then (b, c)
is a good estimator of the path p from u′′ to v in T (S′). Also, Λ(p) ≤ Λ(e).

Proof. This follows from the proof of Observation 15.

2.3.2. Using the Estimates of Λ(e). We now return to the problem of showing
how to add a new leaf x to T ′(S′). As we indicated above, for every internal edge
e′ = (u′, v′) of T ′(S′), we use the method in Section 2.3.1 to estimate Λ(e) where
e = (u, v) is the edge of T (S′) such that u ∈ u′ and v ∈ v′. If the observed value
of Λ(e) exceeds 1−15ǫ4/16 then we will contract e. The accuracy of our estimates will
guarantee that we will not contract e if Λ(e) ≤ 1−ǫ4, and that we definitely contract e
if Λ(e) > 1 − 7ǫ4/8. We will then add the new leaf x to T ′(S′) as follows. We will
insert a new edge (x, x′) into T ′(S′). We will do this by either (1) identifying x′ with
a node already in T ′(S′), or (2) splicing x′ into the middle of some edge of T ′(S′).

We will now show how to decide where to attach x′ in T ′(S′). We start with the
following definitions. Let S′′ be the subset of S′ such that for every y ∈ S′′ we have
|cov(x, y)| ≥ (ǫ2/2)4. Let T ′′ be the subtree of T ′(S′) induced by the leaves in S′′. Let

S′′′ be the subset of S′ such that for every y ∈ S′′′ we have |ĉov(x, y)| ≥ (ǫ2/2)
4 − ǫ3.

Let T ′′′ be the subtree of T ′(S′) induced by the leaves in S′′′.
Observation 19. If T (S′ ∪ {x}) has x′ attached to an edge e = (u, v) of T (S′)

and e′ is the edge corresponding to e in T ′(S′) (that is, e′ = (u′, v′), where u ∈ u′ and
v ∈ v′), then e′ is an edge of T ′′.

Proof. By Observation 14 there is a good estimator (c, b | a, d) for e. Since x is
being added to S′ (using Equation 8), |cov(x, x′)| ≥ ǫ2/2. Thus, by Observation 12

and Equation 9, every leaf y ∈ {a, b, c, d} has |cov(x, y)| ≥ (ǫ2/2)
4
. Thus, a, b, c and

d are all in S′′ so e′ is in T ′′.
Observation 20. If T (S′ ∪ {x}) has x′ attached to an edge e = (u, v) of T (S′)

and u and v are both contained in node u′ of T ′(S′) then u′ is a node of T ′′.
Proof. Since u is an internal node of T (S′), it has degree at least 3. By Ob-

servation 8 and Equation 8, there are three leaves a1, a2 and a3 meeting at u with
|cov(u, ai)| ≥ ǫ2/2. Similarly, |cov(u, v)| ≥ ǫ2/2. Thus, for each ai, |cov(x, ai)| ≥
(ǫ2/2)

3
so a1, a2, and a3 are in S′′.

Observation 21. S′′ ⊆ S′′′.
Proof. This follows from the accuracy of the covariance estimates in Step 1.
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Fig. 4. The setting for Test1(u′, v′, a1, a2, b) and Test2(u′, v′, a1, a2, b) when v′ is an internal
node of T ′′′. (If v′ is a leaf, we perform the same tests with v′ = b.).

We will use the following algorithm to decide where to attach x′ in T ′′′. In the
algorithm, we will use the following tool. For any triple (a, b, c) of leaves in S′ ∪ {x},
let u denote the meeting point of the paths from leaves a, b and c in T (S′ ∪{x}). Let
Mu be the MET which has the same distribution as M(S′ ∪ {x}), but is rooted at u.
(Mu exists, by Observation 3.) Let Λc(a, b, c) denote the weight of the path from u
to c in Mu. By observation 11, Λc(a, b, c) is equal to the weight of the path from u
to c in M(S′ ∪ {x}). (This follows from the fact that re-rooting at u only redirects
internal edges.) It follows from the definition of Λ (Equation 1) and from Equation 3
that

Λc(a, b, c) =

√
cov(a, c)cov(b, c)

cov(a, b)
.(22)

If a, b and c are in S′′′ ∪ {x}, then by the accuracy of the covariance estimates and
Equations 8 and 9, the absolute value of the pairwise covariance of any pair of them is
at least ǫ82/210. As in Section 2.3.1, we can estimate cov(a, c), cov(b, c) and cov(a, b)
within a factor of (1 ± ǫ′) of the correct values for any ǫ′ whose inverse is at most
a polynomial in n, and 1/ǫ. Thus, we can estimate Λc(a, b, c) within a factor of
(1± ǫ4/16) of the correct value. We will take sufficiently many samples to ensure that
the probability that any of the estimates is outside of the required range is at most
δ/(6n2). Thus, the probability that any estimate is outside of the range for any x is
at most δ/(6n).

We will now determine where in T ′′′ to attach x′. Choose an arbitrary internal
root u′ of T ′′′. We will first see where x′ should be placed with respect to u′. For each
neighbour v′ of u′ in T ′′′, each pair of leaves (a1, a2) on the “u′” side of (u′, v′) and
each leaf b on the “v′” side of (u′, v′) (see Figure 4) perform the following two tests.

• Test1(u′, v′, a1, a2, b): The test succeeds if the observed value of
Λx(a1, x, b)/Λx(a2, x, b) is at least 1 − ǫ4/4.

• Test2(u′, v′, a1, a2, b): The test succeeds if the observed value of
Λb(a1, a2, b)/Λb(a1, x, b) is at most 1 − 3ǫ4/4.

We now make the following observations.
Observation 22. If x is on the “u side” of (u, v) in T (S′′′ ∪ {x}) and u is in u′

in T ′′′ and v is in v′ 6= u′ in T ′′′ then some test fails.
Proof. Since u′ is an internal node of T ′′′, it has degree at least 3. Thus, we can

construct a test such as the one depicted in Figure 5. (If x′ = u then the figure is still
correct, that would just mean that Λ(f) = 1. Similarly, if v′ is a leaf, we simply have
Λ(f ′) = 1 where f ′ is the edge from v to b.) Now we have

1

Λ(f)
=

Λx(a1, x, b)

Λx(a2, x, b)
=

Λb(a1, a2, b)

Λb(a1, x, b)
.
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Fig. 5. Either Test1(u′, v′, a1, a2, b) fails or Test2(u′, v′, a1, a2, b) fails.
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Fig. 6. Test1(u′, v′, a1, a2, b) and Test2(u′, v′, a1, a2, b) succeed for all choices of a1, a2 and b.

However, Test1(u′, v′, a1, a2, b) will only succeed if the left hand fraction is at least
1−ǫ4/4. Furthermore, Test2(u′, v′, a1, a2, b) will only succeed if the right hand fraction
is at most 1−3ǫ4/4. Since our estimates are accurate to within a factor of (1±ǫ4/16),
at least one of the two tests will fail.

Observation 23. If x is between u and v in T (S′′′ ∪{x}) and the edge f from u
to x′ has Λ(f) ≤ 1−7ǫ4/8 then Test1(u′, v′, a1, a2, b) and Test2(u′, v′, a1, a2, b) succeed
for all choices of a1, a2 and b.

Proof. Every such test has the form depicted in Figure 6, where again g might be
degenerate, in which case Λ(g) = 1. Observe that Λx(a1, x, b)/Λx(a2, x, b) = 1, so its
estimate is at least 1 − ǫ4/4 and Test1 succeeds. Furthermore,

Λb(a1, a2, b)

Λb(a1, x, b)
= Λ(f)Λ(g) ≤ Λ(f) ≤ 1 − 7ǫ4/8,

so the estimate is at most 1 − 3ǫ4/4 and Test2 succeeds.
Observation 24. If x is on the “v side” of (u, v) in T (S′′′∪{x}) and Λ(e) ≤ 1−

7ǫ4/8 (recall from the beginning of Section 2.3.2 that Λ(e) is at most 1−7ǫ4/8 if u and
v are in different nodes of T ′′′), then Test1(u′, v′, a1, a2, b) and Test2(u′, v′, a1, a2, b)
succeed for all choices of a1, a2 and b.

Proof. Note that this case only applies if v is an internal node of T (S′′′). Thus,
every such test has one of the forms depicted in Figure 7, where some edges may be
degenerate. Observe that in both cases Λx(a1, x, b)/Λx(a2, x, b) = 1, so its estimate
is at least 1 − ǫ4/4 and Test1 succeeds. Also in both cases

Λb(a1, a2, b)

Λb(a1, x, b)
= Λ(e)Λ(f)Λ(g) ≤ Λ(e) ≤ 1 − 7ǫ4/8,

so the estimate is at most 1 − 3ǫ4/4 and Test2 succeeds.
Now note (using Observation 22) that node u′ has at most one neighbour v′ for

which all tests succeed. Furthermore, if there is no such v′, Observations 23 and 24
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Fig. 7. Test1(u′, v′, a1, a2, b) and Test2(u′, v′, a1, a2, b) succeed for all choices of a1, a2 and b.

imply that x′ can be merged with u′. The only case that we have not dealt with is
the case in which there is exactly one v′ for which all tests succeed. In this case, if v′

is a leaf, we insert x′ in the middle of edge (u′, v′). Otherwise, we will either insert
x′ in the middle of edge (u′, v′), or we will insert it in the subtree rooted at v′. In
order to decide which, we perform similar tests from node v′, and we check whether
Test1(v′, u′, a1, a2, b) and Test2(v′, u′, a1, a2, b) both succeed for all choices of a1, a2,
and b. If so, we put x′ in the middle of edge (u′, v′). Otherwise, we recursively place
x′ in the subtree rooted at v′.

2.4. Step 4: For each related set S, construct a MET M ′(S) which is

close to M(S). For each set S of related leaves we will construct a MET M ′(S) with
leaf-set S such that each edge parameter of M ′(S) is within ±ǫ1 of the corresponding
parameter of M(S). The topology of M ′(S) will be T ′(S). We will assume without
loss of generality that T (S) has the same root as T ′(S). The failure probability for S
will be at most δ/(3n), so the overall failure will be at most δ/3.

We start by observing that the problem is easy if S has only one or two leaves.
Observation 25. If |S| < 3 then we can construct a MET M ′(S) such that each

edge parameter of M ′(S) is within ±ǫ1 of the corresponding parameter of M(S).
We now consider the case in which S has at least three leaves. Any edge of T (S)

which is contracted in T ′(S) can be regarded as having e0 and e1 set to 0. The fact
that these are within ±ǫ1 of their true values follows from the following lemma.

Lemma 26. If e is an internal edge of M(S) from v to w with Λ(e) > 1− ǫ4 then
e0 + e1 < 2ǫ4 = ǫ1/(2n).

Proof. First observe from Observation 9 that Pr(w = 0) 6∈ {0, 1} and from
Observation 10 that e0 + e1 6= 1. Using algebraic manipulation, one can see that

Pr(v = 1) =
Pr(w = 1) − e0

1 − e0 − e1

Pr(v = 0) =
Pr(w = 0) − e1

1 − e0 − e1
.
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Thus, by Equation 1,

Λ(e)2 =

(
1 − e0

Pr(w = 1)

)(
1 − e1

Pr(w = 0)

)
.

Since Λ(e)2 ≥ 1 − 2ǫ4, we have e0 ≤ 2ǫ4 Pr(w = 1) and e1 ≤ 2ǫ4 Pr(w = 0), which
proves the observation.

Thus, we need only show how to label the remaining parameters within ±ǫ1. Note
that we have already shown how to do this in Section 2.3.1. Here the total failure
probability is at most δ/(3n) because there is a failure probability of at most δ/(6n2)
associated with each of the 2n edges.

2.5. Step 5: Form M ′ from the METs M ′(S). Make a new root r for M ′

and set Pr(r = 1) = 1. For each related set S of leaves, let u denote the root of M ′(S),
and let p denote the probability that u is 0 in the distribution of M ′(S). Make an
edge e from r to u with e1 = p.

2.6. Proof of Theorem 1. Let M ′′ be a MET which is formed from M as
follows.

• Related sets are formed as in Step 2.
• For each related set S, a copy M ′′(S) of M(S) is made.
• The METs M ′′(S) are combined as in Step 5.

Theorem 1 follows from the following lemmas.
Lemma 27. Suppose that for every set S of related leaves, every parameter of

M ′(S) is within ±ǫ1 of the corresponding parameter in M(S). Then var(M ′′, M ′) ≤
ǫ/2.

Proof. First, we observe (using a crude estimate) that there are at most 5n2

parameters in M ′. (Each of the (at most n) METs M ′(S) has one root parameter
and at most 4n edge parameters.) We will now show that changing a single parameter
of a MET by at most ±ǫ1 yields at MET whose variation distance from the original
is at most 2ǫ1. This implies that var(M ′′, M ′) ≤ 10n2ǫ1 = ǫ/2. Suppose that e is an
edge from u to v and e0 is changed. The probability that the output has string s on
the leaves below v and string s′ on the remaining leaves is

Pr(u = 0)Pr(s′ | u = 0)(e0 Pr(s | v = 1) + (1 − e0) Pr(s | v = 0))

+ Pr(u = 1)Pr(s′ | u = 1)(e1 Pr(s | v = 0) + (1 − e1) Pr(s | v = 1)).

Thus, the variation distance between M ′′ and a MET obtained by changing the value
of e0 (within ±ǫ1) is at most

ǫ1
∑

s

∑

s′

Pr(u = 0)Pr(s′ | u = 0)(Pr(s | v = 1) + Pr(s | v = 0))

≤ ǫ1 Pr(u = 0)

(∑

s′

Pr(s′ | u = 0)

) (
(
∑

s

Pr(s | v = 1)) + (
∑

s

Pr(s | v = 0))

)

≤ 2ǫ1.

Similarly, if ρ1 is the root parameter of a MET then the probability of having output s
is

ρ1 Pr(s | r = 1) + (1 − ρ1) Pr(s | r = 0).
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So the variation distance between the original MET and one in which ρ1 is changed
within ±ǫ1 is at most

∑

s

ǫ1(Pr(s | r = 1) + Pr(s | r = 0)) ≤ 2ǫ1.

Lemma 28. var(M ′′, M) ≤ ǫ/2.
Before we prove Lemma 28, we provide some background material. Recall that

the weight w(e) of an edge e of a MET is |1 − e0 − e1| and define the weight w(ℓ) of
a leaf ℓ to be the product of the weights of the edges on the path from the root to ℓ.
We will use the following lemma.

Lemma 29. In any MET with root r, the variation distance between the distribu-
tion on the leaves conditioned on r = 1 and the distribution on the leaves conditioned
on r = 0 is at most 2

∑
ℓ w(ℓ), where the sum is over all leaves ℓ.

Proof. We proceed by induction on the number of edges in the MET. In the base
case there are no edges so r is a leaf, and the result holds. For the inductive step,
let e be an edge from r to node x. For any string s1 on the leaves below x and any
string s2 on the other leaves,

Pr(s1s2 | r = 0) = Pr(s2 | r = 0)(e0 Pr(s1 | x = 1) + (1 − e0) Pr(s1 | x = 0).

Algebraic manipulation of this formula shows that Pr(s1s2 | r = 1)−Pr(s1s2 | r = 0)
is

(1 − e0 − e1) Pr(s2 | r = 1) (Pr(s1 | x = 1) − Pr(s1 | x = 0))

+ Pr(s1 | r = 0) (Pr(s2 | r = 1) − Pr(s2 | r = 0)).(23)

It follows that the variation distance is at most the sum over all s1s2 of the absolute
value of the quantity in Equation 23, which is at most

|1 − e0 − e1|
(∑

s2

Pr(s2 | r = 1)

)(∑

s1

|Pr(s1 | x = 1) − Pr(s1 | x = 0)|
)

+

(∑

s1

Pr(s1 | r = 0)

) (∑

s2

|Pr(s2 | r = 1) − Pr(s2 | r = 0)|
)

.

The result follows by induction.
Lemma 30. Suppose that m is a MET with n leaves and that e is an edge from

node u to node v. Let m′ be the MET derived from m by replacing e0 with Pr(v = 1)
and e1 with Pr(v = 0). Then var(m, m′) ≤ n2z, where z is the maximum over all
pairs (x, y) of leaves which are connected via e in m of |cov(x, y)|.

Proof. By Observation 3, we can assume without loss of generality that u is the
root of m. For any string s1 on the leaves below v and any string s2 on the remaining
leaves, we find (via a little algebraic manipulation) that the difference between the
probability that m outputs s1s2 and the probability that m′ does is

Pr(u = 1)Pr(u = 0)(1 − e0 − e1)(Pr(s2 | u = 1) −
Pr(s2 | u = 0))(Pr(s1 | v = 1) − Pr(s1 | v = 0)).

Thus, the variation distance between m and m′ is Pr(u = 1)Pr(u = 0)(1 − e0 − e1)
times the product of the variation distance between the distribution on the leaves
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below v conditioned on v = 1 and the distribution on the leaves below v conditioned
on v = 0 and the variation distance between the distribution on the remaining leaves
conditioned on u = 1 and the distribution on the remaining leaves conditioned on u =
0. By Lemma 29, this is at most

Pr(u = 0)Pr(u = 1)


2

∑

ℓ below v

w(ℓ)




2

∑

other ℓ

w(ℓ)


 ,

which by Equation 3 is

4
∑

(x, y) connected via e

|cov(x, y)|,

which is at most 4(n/2)
2
z = n2z.

Lemma 31. If, for two different related sets, S and S′, an edge e from u to v is
in M(S) and in M ′(S), then e0 + e1 ≤ n2ǫ2/(n + 1).

Proof. By the definition of the leaf connectivity graph in Step 2, there are leaves
a, a′ ∈ S and b, b′ ∈ S′ such that the path from a′ to a and the path from b′ to b both
go through e = u → v and

|ĉov(a, a′)| ≥ (3/4)ǫ2 and |ĉov(b, b′)| ≥ (3/4)ǫ2,

and the remaining covariance estimates amongst leaves a, a′, b and b′ are less than
(3/4)ǫ2. Without loss of generality (using Observation 3), assume that u is the root
of the MET. Let pu,a′ denote the path from u to a′ and use similar notation for the
other leaves. By Equation 3 and the accuracy of the estimates in Step 1,

Pr(u = 0)2 Pr(u = 1)2w(e)2w(pu,a′)w(pv,a)w(pu,b′ )w(pv,b) ≥ ((3/4)ǫ2 − ǫ3)
2

Pr(u = 0)Pr(u = 1)w(pu,a′)w(pu,b′ ) < (3/4)ǫ2 + ǫ3

Pr(v = 0)Pr(v = 1)w(pv,a)w(pv,b) < (3/4)ǫ2 + ǫ3.

Thus,

w(e) ≥
(

1 − 2ǫ3
(3/4)ǫ2 + ǫ3

)√
Pr(v = 1)Pr(v = 0)

Pr(u = 1)Pr(u = 0)
.

By Equation 1,

Λ(e) ≥ 1 − 2ǫ3
(3/4)ǫ2 + ǫ3

.

The result now follows from the proof of Lemma 26. (Clearly, the bound in the
statement of Lemma 31 is weaker than we can prove, but it is all that we will need.)

Proof of Lemma 28. Let M∗ be the MET which is the same as M except
that every edge e which is contained in M(S) and M(S′) for two different related
sets S and S′ is contracted. Similarly, let M ′′∗ be the MET which is the same
as M ′′ except that every such edge has all of its copies contracted in M ′′∗. Clearly,
var(M, M ′′) ≤ var(M, M∗)+var(M∗, M ′′∗)+var(M ′′∗, M ′′). Lemma 31 then implies
that var(M, M∗) + var(M ′′∗, M ′′) ≤ ℓn2ǫ2, where ℓ is the number of edges in M that



EVOLUTIONARY TREES CAN BE LEARNED IN POLYNOMIAL TIME 21

are contracted. We now wish to bound var(M∗, M ′′∗). By construction, M∗(S) and
M∗(S′) do not intersect in an edge (for any related sets S and S′). Now suppose that
M∗(S) and M∗(S′) both contain node u. We can modify M∗ without changing the
distribution in a way that avoids this overlap. To do this, we just replace node u with
two copies of u, and we connect the two copies by an edge e with e0 = e1 = 0. Note
that this change will not affect the operation of the algorithm. Thus, without loss of
generality, we can assume that for any related sets S and S′, M∗(S) and M∗(S′) do
not intersect. Thus, M∗ and M ′′∗ are identical, except on edges which go between the
sub-METs M∗(S). Now, any edge e going between two sub-METs has the property
that for any pair of leaves, x and y connected via e, |cov(x, y)| ≤ ǫ2. (This follows from
the accuracy of our covariance estimates in Step 1.) Thus, by Lemma 30, changing
such an edge according to Step 5 adds at most n2ǫ2 to the variation distance. Thus,
var(M∗, M ′′∗) ≤ ℓ′n2ǫ2, where ℓ′ is the number of edges that are modified according
to Step 5. We conclude that var(M, M ′′) ≤ (2n)n2ǫ2 = ǫ1/2 ≤ ǫ/2.
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3. Appendix.

3.1. Proof of Lemma 2.

Lemma 2 A class of probability distributions over the domain {0, 1}n that is
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PAC-learnable under the variation distance metric is PAC-learnable under the KL-

distance measure.

Proof. Let K be a polynomial in three inputs and let A be an algorithm which
takes as input K(n, 1/ǫ, 1/δ) samples from a distribution D from the class of dis-
tributions and, with probability at least 1 − δ, returns a distribution D′ such that
var(D,D′) ≤ ǫ. Without loss of generality, we can assume that ǫ is sufficiently small.
For example, it will suffice to have ǫ ≤ 2/15.

Define algorithm A′ as follows. Let ξ = ǫ2/(12n). Run A with sample size
K(n, 1/ξ, 1/δ) (note that the sample size is polynomial in n, 1/ǫ, and 1/δ). Let D′

be the distribution returned by A. Let U denote the uniform distribution on {0, 1}n

and let D′′ be the distribution defined by

D′′(s) = (1 − (ξ))D′(s) + ξ U(s).

With probability at least 1−δ, var(D,D′) ≤ ξ. By definition of D′′, var(D′,D′′) ≤
2ξ. Thus, with probability at least 1 − δ, var(D,D′′) < 3ξ. Note that for all s,
D′′(s) ≥ ξ 2−n. Let S be the set of all output strings s satisfying D′′(s) < D(s). S
contains all the strings which contribute positively to the KL-distance from D to D′′.
Thus,

KL(D,D′′) ≤
∑

s∈S

D(s)(logD(s) − logD′′(s))

=
∑

s∈S

(D(s) −D′′(s))(logD(s) − logD′′(s)) +
∑

s∈S

D′′(s)(logD(s) − logD′′(s)).

We have seen that var(D,D′′) ≤ 3ξ. Thus,
∑

s∈S(D(s) − D′′(s)) ≤ 3ξ. So, the first
term is at most

max
s∈S

(logD(s) − logD′′(s))
∑

s∈S

(D(s) −D′′(s))

≤ 3ξ max
s∈S

(logD(s) − logD′′(s))

≤ 3ξ max
s∈S

(− logD′′(s))

≤ 3ξ(− log(ξ 2−n))

= 3ξ(n − log(ξ)).

Furthermore, the second term is at most

∑

s∈S

D′′(s)(logD(s) − logD′′(s))

=
∑

s∈S

D′′(s)(log(D′′(s) + hs) − logD′′(s)),

where hs = D(s)−D′′(s), which is a positive quantity for s ∈ S. By concavity of the
logarithm function, the above quantity is at most

∑

s∈S

D′′(s)hs

[ d

dx
(log(x))

]
x=D′′(s)

=
∑

s∈S

hs ≤ 3ξ.
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Thus, KL(D,D′′) ≤ 3ξ(1 + n − log ξ). This quantity is at most ǫ for all n ≥ 1 by the
definition of ξ.

The method in the proof of Lemma 2 converts a hypothesis distribution which
is close (in variation distance) to the target distribution to a hypothesis distribution
which is close (in KL-distance) to the target distribution. However, if the original
hypothesis is given as a 2-state MET, then the modified hypothesis would require
a 3-state MET to realize it. We conclude the paper by explaining how to perform
a similar trick using only 2-state METs. The distribution obtained is not quite the
same as the one used in the proof of Lemma 2, but it has the properties needed to
show that small KL-distance is achieved.

Let M be the target Markov Evolutionary Tree. We run the PAC learning algo-
rithm with accuracy parameter ξ = ǫ2/(12n3) to obtain MET M ′. Now we construct
a new hypothesis M ′′ by adjusting some of the parameters of M ′ as follows:

For each edge e = (u, l) of M ′ where l is a leaf, let e0 and e1 be its parameters.
If e0 < ξ then we set e0 = ξ and if e0 > 1 − ξ then set e0 = 1 − ξ. We make
the same change to e1. By the proof of Lemma 27, var(M ′, M ′′) ≤ 4nξ, since 2n
parameters have each been changed by at most ξ. Hence, with probability at least
1 − δ, var(M, M ′′) ≤ (1 + 4n)ξ.

For each string s ∈ {0, 1}n, M ′′(s) ≥ ξn (where M ′′(s) denotes the probability
that M ′′ outputs s). Using a similar argument to the proof of Lemma 2,

KL(M, M ′′) ≤ (1 + 4n)ξ(1 − log(ξn)) = (1 + 4n)ξ(1 − n log ξ)

= (1 + 4n)
ǫ2

12n3
(1 − n(2 log ǫ − 3 logn − log 12))

which as before is at most ǫ for all n ≥ 1.


