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It is well-known that for any input satisfying Pmi=1 ri = Pnj=1 j, there existsat least one ontingeny table with row sums r and olumn sums  (see, forexample, Diaonis and Gangolli [5℄). It is easy to onstrut one element of �r;using the \North-West orner" rule (see, for example, Hadley [12℄).In this paper we onsider the problem of approximately ounting the set of allontingeny tables with spei�ed row and olumn sums. We present the �rstfully polynomial randomized approximation sheme (fpras) [17℄ for ountingsuh tables when the number of rows is onstant. The de�nition of an fprashas been given elsewhere but we inlude it here to be preise. An fpras forontingeny tables is an algorithm that takes a list of row sums r and a listof olumn sums  as input, together with an error parameter � 2 (0; 1). Thealgorithmmust satisfy two onditions to be an fpras. Firstly, it must output anapproximate value that lies within (1� �)j�r;j, with high probability. Seond,its running time must be polynomial in the size of the input and also in ��1.Here we present an fpras for the ase when m is onstant.Our algorithm also implies a polynomial time proedure for the losely relatedproblem of sampling suh a table almost uniformly at random. See the surveysof Jerrum and Sinlair [14℄, or Dyer and Greenhill [8℄, for more de�nitions andbakground about approximate ounting and sampling.The ounting problem is of onsiderable interest, both from the theoretial andpratial viewpoints. The thesis of Mount provides muh useful informationon this problem and its relatives [20℄. Dyer, Kannan and Mount [11℄ haveshown that the problem of ounting ontingeny tables is #P -omplete evenif there are only two rows; therefore, we do not expet to be able to exatlyount the number of ontingeny tables in polynomial-time, even for two-rowedtables. The existene of an fpras for ounting ontingeny tables has beenan open question for several years. For example, the 1997 survey by Jerrumand Sinlair [14℄ listed it as an important open problem in the omplexity ofapproximate ounting.Pratially, ontingeny tables play an important role in statistis, where theyare used to tabulate the results of surveys. The analysis of suh tables providesstrong motivation for the problem of eÆiently sampling ontingeny tableswith given row and olumn sums almost uniformly at random. Diaonis andEfron [4℄ provide many details on the pratial motivation for the samplingproblem.Before presenting our algorithm, we summarize previous work on the problemof ounting ontingeny tables. The �rst polynomial-time algorithm for ount-ing ontingeny tables was due to Barvinok [1℄, who proved that the numberof ontingeny tables an be ounted exatly in polynomial-time, when thenumber of rows and olumns is onstant (see also [10℄).2



Most other early papers on the subjet addressed the sampling problem. Thepaper of Diaonis and Gangolli [5℄ seems to be the �rst to desribe a Markovhain on the spae of ontingeny tables whih onverges to the uniform distri-bution. The onvergene rate of this hain was subsequently analyzed by Dia-onis and Salo�-Coste [6℄ for the ase when the number of rows and olumnsis �xed and by Hernek [13℄ for the ase when there are two rows. The analysesfor both ases showed that the hain mixed in pseudopolynomial time (therunning time is polynomial in the table sum). Chung et al. [3℄ gave a Markovhain for ontingeny tables that onverges in pseudopolynomial time for anyrow and olumn sums whih are suÆiently large.The �rst polynomial-time algorithm for approximately ounting ontingenytables with unbounded dimension was the algorithm of Dyer, Kannan andMount [11℄. They (i) gave a sampling algorithm that onverges in polyno-mial time for any input with row sums of size 
(n2m) and olumn sums ofsize 
(nm2); (ii) showed how to use the sampling algorithm to approximatelyount the number of ontingeny tables for inputs satisfying the same on-straints. This result was later re�ned by Morris [19℄, who showed that theresult also holds when the row sums are 
(n3=2m logm) and the olumn sumsare 
(m3=2n logn). Dyer and Greenhill [9℄ gave a polynomial-time algorithmfor ounting ontingeny tables when the table has two rows. They �rst de-�ned a Markov hain for sampling from the set of ontingeny tables withthe given row and olumn sums, and showed that this hain onverges inpolynomial-time when the input has two rows. Then they showed how to usetheir sampling algorithm to obtain an fpras for the orresponding ountingproblem. The result we prove here is a generalization of Dyer and Greenhill's(from two rows to m rows), but we use an entirely di�erent approah.A novel feature of our algorithm, whih is desribed in Setion 2, is that it isa hybrid of an exat ounting algorithm and an approximation algorithm. Itan be viewed as having two phases. The input is a list ontaining a onstantnumber of row sums, a list of olumn sums, and an error parameter � > 0. Inthe �rst phase of the algorithm (Step 1 below) we partition the olumns ofthe table into \small olumns" and \large olumns". Every ontingeny tablefor the given row and olumn sums an be split into two smaller tables { atable on the small olumns (with some list of partial row sums), and a tableon the large olumns (whose list of row sums is the original list of row sumsless the list of partial row sums). We show that the number of di�erent lists ofpartial row sums that may our on the table of small olumns is polynomial inthe number of olumns and ��1. By dynami programming, we an ount thenumber of ontingeny tables on the small olumns for any given list of partialrow sums in polynomial time. We then write the number of ontingeny tablesfor the original input as the weighted sum (eah weight is the ount omputedfor some list of partial row sums) of a polynomial number of terms, whereeah term is the number of ontingeny tables for some list of row sums and3



the large olumns.In the seond phase of the algorithm (Step 2), we approximately ount ontin-geny tables for eah of the new instanes of the problem generated in the �rstphase. Consider any spei� instane. We know the number of rows is onstantand all the olumns are large. We partition the rows using a di�erent methodto that used for the olumns. We de�ne a \gap fator" whih is suÆientlylarge. Then we partition the rows into small rows and substantially larger rows{ eah of the large rows must be larger than the produt of any small row andthe gap fator. Note that the number of ontingeny tables for our given rowand olumn sums an be written as the sum, over all possible partial olumnsums for the small rows, of the number of ontingeny tables for the given rowand olumn sums whih have these partial olumn sums. Our partitioning ofthe rows ensures that any partial olumn sums will be small in omparisonto the large olumn sums. In Setions 3 and 4 we show that in this ase thenumber of ontingeny tables with given partial olumn sums does not de-pend muh on the spei� partial olumn sums that are onsidered. Thereforewe an estimate the number of ontingeny tables by hoosing a �xed listof partial olumn sums, and alulating the produt of the total number oftables for the small rows (with any partial olumn sums) and the number ofontingeny tables for our instane whih have the �xed partial olumn sums.The total number of tables for the small rows an be alulated using binomialoeÆients. The seond quantity we need to ompute is a single instane ofthe problem of ounting ontingeny tables, where all the olumns are largeand all the rows are large. In Setion 3 we show that, in this ase, the numberof ontingeny tables is very lose to the volume of a onvex polytope. Weuse the polynomial-time algorithm of Kannan, Lov�asz and Simonovits [16℄,for approximating the volume of onvex bodies, to estimate the volume of thispolytope.For many ombinatorial problems, the problem of approximately ounting thenumber of disrete strutures satisfying a given property is losely relatedto the problem of sampling one disrete struture with this property almostuniformly at random. In random sampling, we usually want to onstrut a(fully) polynomial almost-uniform sampler (see, for example, Jerrum, Valiantand Vazirani [15℄ , Sinlair and Jerrum [21℄). It is well-known that for a spe-ial lass of problems known as self-reduible problems, the existene of apolynomial-time algorithm for approximate ounting implies the existene ofa fully polynomial almost-uniform sampler [15,21℄. The ontingeny tablesproblem is unusual beause it is not known to satisfy the ondition of self-reduibility (or a more general ondition disussed by Dyer and Greenhill [8℄).However, in Setion 5 we will show that our fpras an be used to obtain apolynomial almost-uniform sampler for sampling almost uniformly at randomfrom the spae of ontingeny tables with given row and olumn sums, whenthe number of rows is onstant. 4



2 The AlgorithmBefore presenting the algorithm, we introdue some notation. First, for anylists r = (r1; : : : ; rm) and  = (1; : : : ; n) of non-negative integers, we say thata m� n integer matrix X is a ontingeny table with row sums r and olumnsums  i�Xi;j � 0 for all i; j;nXj=1Xi;j = ri for all i;mXi=1Xi;j = j for all jWe let �r; denote the set of all ontingeny tables with row sums r andolumn sums . The ardinality of this set, denoted j�r;j, is the number ofontingeny tables with the given row and olumn sums. We always assumethat Pmi=1 ri is equal to Pnj=1 j (otherwise �r; is empty) and denote this total(also alled the table sum) by N .Throughout this paper we will assume that m � 2 is a onstant. We assumewithout loss of generality that n � m.Our algorithm takes a list r = (r1; : : : ; rm) of row sums and a list  =(1; : : : ; n) of olumn sums, an error parameter � satisfying 0 < � < 1 and aon�dene parameter � satisfying 0 < � < 1. The algorithm runs in time poly-nomial in n, logN , ��1 and log ��1 and returns an estimate Sr;. In Setions 3and 4, we will prove that jSr;�j�r;jj � �j�r;j with probability at least 1��.The following quantities will be useful in desribing the algorithm:p� = logn(20nm=�)p = 2(m� 1)(p� + 2) + 1q = (p� 1)=2(m� 1)Note that q is equal to p� + 2.We will apply the following Observation (f. page 63 of Mount [20℄):Observation 1 Let r = (r1; : : : ; rm) and  = (1; : : : ; n) be two lists of posi-tive integers satisfying Pmi=1 ri = Pnj=1 j.Let 1 � k < n. Let S be the set of ordered partitions s of Pkj=1 j into m partsthat satisfy si � ri for all 1 � i � m. Then5



j�r;j=Xs2S j�s;(1;:::;k)j � j�r�s;(k+1;:::;n)j (1)Let 1 � ` < m. Let T be the set of ordered partitions t of Pì=1 ri into n partsthat satisfy tj � j for all 1 � j � n. Thenj�r;j=Xt2T j�(r1;:::;r`);tj � j�(r`+1;:::;rm);�tj (2)The following observation will also be usefulObservation 2 Let m � 2 be an integer, and let M be another positive inte-ger. Then the number of ordered partitions of M into m parts is M +m� 1m� 1 ! � 2Mm�1Our algorithm is based on Observation 1.In Step 1 of the algorithm, we hoose an appropriate value for k and alulatej�s;(1;:::;k)j exatly for all s 2 S.In Step 2 we approximate j�r�s;(k+1;:::;n)j within (1� �) of its true value withhigh probability, for every s 2 S.In Step 3 we apply Equation (1) to estimate �r; within (1 � �) with highprobability.2.1 Step 1Assume that (1; : : : ; n) is sorted in non-dereasing order. Let k be the indexsuh that j � np for all j � k and j > np for all j � k + 1.Columns 1; : : : ; k are the \small olumns" of the table.Columns k+1; : : : ; n are the \large olumns".In this step of our algorithm, we will use dynami programming to alulatej�s;(1;:::;k)j for every partition s 2 S. In fat, our algorithm will onsider eaholumn index h (1 � h � k) in inreasing order, and ompute j�s;(1;:::;h)j forevery ordered partition s of Phj=1 j into m parts.We will let Sh represent the set of ordered partitions of Phj=1 j into m parts,for 1 � h � k. 6



If h = 1, then j�s;(1)j = 1 for every partition s of 1 into m parts. Note thatbeause 1 � np, then by Observation 2, the number of ordered partitions wewill onsider is at most 2(np)m.If 2 � h � k, then we apply Equation (1) of Observation 1. Let s 2 Sh. For us,the values of the parameters n, k and r of Equation (1) are bn = h; bk = h� 1and br = s. Then by Equation (1) we havej�s;(1;:::;h)j = Xq2Sh�1 j�q;(1;:::;h�1)j � j�s�q;hj= Xq2Sh�1;qi�si for all i j�q;(1;:::;h�1)j; (3)sine �s�q;h = 1 if si � qi � 0 for all 1 � i � m (the single \table" is givenby Xi;h = si � qi for all i) and �s�q;h = 0 otherwise. Therefore we use thej�q;(1;:::;h�1)j values (onstruted in the previous phase of our algorithm) toobtain j�s;(1;:::;h)j.Note that beause j � np for all j � k, thereforehXj=1 j � hnp � np+1: (4)for any 1 � h � k. By Observation 2 and by Inequality (4), the numberof ordered partitions of Phj=1 j into m parts is at most 2(np+1)m. ThereforejShj � 2n2m(p+1), whih is polynomial in n and ��1.Therefore for any partiular h � k, we perform O(nm(p+1)) operations toompute j�s;(1;:::;h)j; therefore using O(n2m(p+1)) arithmeti operations, weompute a table ontaining j�s;(1;:::;h)j for every ordered partition s ofPhj=1 jintom parts. Sine k � n, this means that we ompute the table of j�s;(1;:::;k)jusing O(n2m(p+1)+1) arithmeti operations.By de�nition, p+ 1 = 2(m� 1)(p� + 2) + 2 = 2(m� 1)p� + 4m� 2. Thereforenp+1=�20nm� �2(m�1) n4m�2:Therefore Step 1 usesO n12m2�4m2 ! (5)7



arithmeti operations to ompute the set of all j�s;(1;:::;k)j values for s 2 S.We know that none of the integers we ompute is greater than Nnm, thereforeeah addition or omparison performed during Step 1 an be arried out inO(n logN) time.We also know jSj � 2(np+1)m, and therefore jSj isO n6m2�2m2 ! : (6)2.2 Step 2In this step we show how to approximate the value of j�r�s;(k+1;:::;n)j within amultipliative fator of (1� �) of its true value in polynomial time, with highprobability, for any given s 2 S.First let �0 = �=jSj, where � is the original failure probability given as input tothe algorithm. By (6) this implies �0 = ��2m2=n6m2d, where d is the onstantinside the O in (6).Sort the rows of r� s into non-dereasing order and rename this vetor by r0.Let n0 denote n� k, and rename the (k+1; : : : ; n) vetor by (01; : : : ; 0n0).We will estimate j�r0;0j.Let N = Pn0j=1 0j be the table sum on the large olumns.Now lassify the rows of r0 as \small rows" or \large rows" as follows: If r01 � nq,then we lassify all the rows as large rows. Otherwise r01 < nq. Then let ` bethe smallest index suh that r 0̀+1 > nqr 0̀ (if suh an ` exists). The rows 1 to `are the \small rows" and the rows greater than ` are the \large rows".De�ne R = Pì=1 r0i.We onsider three ases.Case 1: All the rows are large rows (r01 � nq). In this ase, the row sums r0and the olumn sums 0 satisfy the onditions of Theorem 3 (see Setion 3).Therefore, by Theorem 3, the value of j�r0;0j is within (1��=15) of the volumeof the onvex polytope P(r0; 0) de�ned in Setion 3. We use the polynomial-time algorithm of Kannan, Lov�asz and Simonovits [16℄ for approximating thevolume of a onvex body, to approximate vol(P(r0; 0)) within a fator of (1�8



�=5), with probability at least 1��0. Thus we approximate j�r0;0j within (1��)with probability at least 1� �0.Case 2: All the rows are small rows. We show this ase annot our. Supposethis is a possibility. Sine all the rows are small rows, the table sum N is equalto R. This table sum is bounded above by mnqm. By de�nition of q,mnqm =mn p�12(m�1)m=mn p�12 (1+1=(m�1))�mnp�1 beause m � 2�np beause m � nTherefore if all the rows were small rows, the table sum on the large olumnswould be at most np. However, sine all the large olumns were assumedto have j > np, N � np implies that there are no large olumns. This isa ontradition (if there are no large olumns, then j�r;j would have beenomputed exatly by Step 1, and Step 2 would not be arried out).Case 3: There are small rows and large rows. The quantity R plays a entralrole in the analysis for this ase. Before proeeding, note that R � Pì=1 nqi,whih is at most (m� 1)nq(m�1) (sine ` < m, we have at least one large row).Substituting for q and then for p,R � (m� 1)n(p�1)=2= (m� 1)n(m�1)(p�+2) (7)np=R � n(p�1)=2 = n(m�1)(p�+2) (8)Now we show how to approximate j�r0;0j for this ase. By Equation (2) ofObservation 1, we writej�r0;0j=Xt j�(r01;:::;r0̀ );tj � j�(r0̀+1;:::;r0m);0�tj (9)where the sum is taken over all partitions t of the value R into a list of n0 non-negative integers.From here on we will denote the large row sums (r 0̀+1; : : : ; r0m) by (u1; : : : ; um0),and any list of modi�ed large olumn sums 0� t by (v1; : : : ; vn0). By onstru-tion, every ui is at least nq. To obtain a lower bound for the vj values, rememberthat by onstrution j � np for every 1 � j � n0. Also we know tj � R forevery 1 � j � n0. Therefore every vj value is at least as big as np � R, andby (8), this is at least np=2. 9



In Setion 3, we will de�ne a onvex polytope P(u; v) in (m0 � 1)(n0 � 1)-dimensional spae for any large row sums u and modi�ed large olumn sums v.Let vol(P(u; v)) denote the the volume of the onvex polytope P(u; v). We willprove the following theorems:Theorem 3 For any list u of large row sums and any list v of modi�ed largeolumn sums, j�u;vj lies within (1� �=15) of vol(P(u; v)) (See Setion 3).Theorem 4 Let u be a list of large row sums and let v and bv be two lists ofmodi�ed large olumn sums. Then vol(P(u; v)) � (1 + �=15)vol(P(u; bv)) (SeeSetion 4).Now we show that Theorems 3 and 4 allow us to approximate all of thedi�erent j�u;vj values (there ould be exponentially many of these) in a singlestep. De�ne some �xed list of modi�ed olumn sums bv by hoosing an arbitrarypartition bt of R, and de�ning bv as 0 � bt. Let v be any other list of modi�edolumn sums. By Theorem 3 we havej�u;vj � (1 + �=15)vol(P(u; v))� (1 + �=15)2vol(P(u; bv))� (1 + �=5)vol(P(u; bv))where the seond line follows by Theorem 4. Also by Theorems 3 and 4 wehavej�u;vj � (1� �=15)vol(P(u; v))� (1� �=15)vol(P(u; bv))=(1 + �=15)� (1� �=5)vol(P(u; bv)):By (9), the produt of vol(P(u; bv)) and Pt j�(r01;:::;r0̀ );tj approximates j�r0;0jwithin (1� �=5).We alulate Pt j�(r01;:::;r0̀ );tj diretly as follows: Sine we are summing over allpossible olumn sums t, we are simply ounting the number of `�n0 tables withthe row sums (r01; : : : ; r 0̀) (and any olumn sums). This is equal to the produtof the terms �r0i+n0�1n0�1 � over all i suh that 1 � i � ` (the term for i ountsthe number of ways of partitioning r0i into an ordered list of n0 non-negativeintegers).We use the algorithm of Kannan, Lov�asz and Simonovits [16℄ to approximatevol(P(u; bv)) within a fator of (1� �=5) with probability at least 1��0. Takingthe produt of this value andPt j�(r01;:::;r0̀ );tj, we will approximate j�r0;0j withina fator of (1� �), with probability at least 1� �0.10



To bound the running time for Step 2 of the algorithm, we use the O� notation,where we ignore logarithmi fators as well as onstant fators.The algorithm of Kannan, Lov�asz and Simonovits [16℄ approximates the vol-ume of a onvex body P in d dimensions to within (1��) of its true value withhigh probability by sampling O�(d5=�2) random d-dimensional points and foreah of these points, performing an orale all to test whether the point liesin the onvex body. The total number of random bits used to generate all thepoints that are tested is O�(d6=�2).The onvex polytopes that we onstrut (either in Case 1 or Case 3) havedimension less than or equal to nm. Also, for the onvex polytopes P(u; bv)that we onsider (de�ned in Setion 3), we an test a point for membershipof P(u; bv) using O(mn) arithmeti operations. Therefore we an use the al-gorithm of Kannan, Lov�asz and Simonovits [16℄ to approximate vol(P(u; bv))(or vol(P(r0; 0)), in Case 1) within (1� �=5) (with probability at least 1� �0)using O�(n6=�2) arithmeti operations.The number of arithmeti operations used to approximate j�r�s;(k+1;:::;n)jis dominated by the number of arithmeti operations of the volume estima-tion algorithm. Also, we an assume that all the arithmeti operations arearried out on numbers of size O�(Nmn), and therefore we an assume thateah arithmeti operation takes O�(n2) time. Therefore the time to estimatej�r�s;(k+1;:::;n)j, for any s 2 S isO�(n8=�2)By (6), we will estimate j�r�s;(k+1;:::;n)j for O(n6m2=�2m2) di�erent s 2 S. Thetotal running time to estimate all these values isO�  n6m2+8�2m2+2 !2.3 Step 3Finally, in Step 3, we use (1) of Observation 1 to onstrut an estimate Sr; ofj�r;j, using the exat values of j�s;(1;:::;k)j for s 2 S (onstruted in Step 1),and the estimates of j�r�s;(k+1;:::;n)j for s 2 S (onstruted in Step 2).By de�nition of �0 = �=jSj, we know that with probability at least (1� �), allof the estimates onstruted in Step 2 lie within (1 � �) of their true values.11



Therefore jj�r;j � Sr;j � �j�r;jwith probability at least (1� �).Combining the running times of Step 1 and Step 2, the running time of ourentire algorithm isO�  n12m2�4m2 ! :3 Approximating j�u;vj by the volume of a onvex bodyIn this setion we prove the laim that the number of ontingeny tables withgiven row and olumn sums an be losely approximated by the volume ofa onvex polytope, if the row and olumn sums are large enough. We beginby introduing some notation. Let u = (u1; : : : ; um0) be a list of row sumsand v = (v1; : : : ; vn0) be a list of olumn sums. Let N 0 be the table sum. Then�u;v is equivalent to the set of non-negative integer solutions for the followingsystem of inequalities (see, for example, Dyer, Kannan and Mount [11℄):n0�1Xj=1 Xi;j� ui for 1 � i � m0 � 1 (10)m0�1Xi=1 Xi;j� vj for 1 � j � n0 � 1 (11)m0�1Xi=1 n0�1Xj=1 Xi;j�N 0 � um0 � vn0 (12)In this setting we assume:Xi;n0 = ui �Pn0�1j=1 Xi;j for i � m0 � 1;Xm0;j = vj �Pm0�1i=1 Xi;j for j � n0 � 1, andXn0;m0 = Pm0�1i=1 Pn0�1j=1 Xi;j � (N 0 � vn0 � um0):In this setion and the next one, we work in the (m0 � 1)(n0 � 1)-dimensionalspae and assume that i ranges over 1 � i � m0 � 1 and j ranges over1 � j � n0 � 1.We de�ne P(u; v) as the onvex polytope onsisting of the set of non-negativereal solutions for (10), (11) and (12).12



For any onvex body P and any � > 0, we de�ne the dilation of P by � tobe the set �P = f�X : X 2 Pg. It is well-known that for any d-dimensionalonvex body P, vol(�P) = �dvol(P) (see Corollary 15, page 101 of Kelley andSrinivasan [18℄).Theorem 3 Let n be an integer and p and q be de�ned as in Setion 2.Let u = (u1; : : : ; um0) be a list of row sums suh that ui � nq for every i,and v = (v1; : : : ; vn0) be a list of olumn sums suh that vj � np=2 for every j(by onstrution m0 � m and n0 � n). Then(1� �15)vol(P(u; v)) � j�u;vj � (1 + �15)vol(P(u; v)):Proof: We assume without loss of generality that um0 is the largest row sumamong the ui, and that vn0 is the largest olumn sum among the vj. Thereforeum0 � N 0=m0 and vn0 � N 0=n0.The following interpretation of j�u;vj will be useful: for eah Z 2 �u;v, wede�ne a hyperube H(Z) suh that X 2 H(Z) i� 0 � Xi;j � Zi;j < 1 forall 1 � i � m0�1 and 1 � j � n0�1. Then every point in P(u; v) is assoiatedwith at most one integer point Z 2 �u;v. Also, for every Z 2 �u;v, the volumeof the hyperube assoiated with Z, denoted vol(H(Z)), is exatly 1 (thoughsome of the hyperube H(Z) may lie outside P(u; v)).In part (i) of this proof we will de�ne two extra onvex polytopes alledP�(u; v) and P+(u; v). We will show thatP�(u; v) � [Z2�u;vH(Z) and [Z2�u;v H(Z) � P+(u; v):As vol([Z2�u;vH(Z)) = j�u;vj, this showsvol(P�(u; v)) � j�u;vj � vol(P+(u; v)): (13)In Part (ii) we will show that(1� �15)vol(P(u; v)) � vol(P�(u; v))and vol(P+(u; v)) � (1 + �15)vol(P(u; v)):Putting this together with (13), we will have(1� �15)vol(P(u; v)) � j�u;vj � (1 + �15)vol(P(u; v))as required. 13



(i): Let P�(u; v) be the set of all real (m0 � 1)(n0 � 1)-dimensional points Xwith non-negative entries that satisfy the following three sets of inequalities:n0�1Xj=1 Xi;j� ui for 1 � i � m0 � 1 (14)m0�1Xi=1 Xi;j� vj for 1 � j � n0 � 1 (15)m0�1Xi=1 n0�1Xj=1 Xi;j�N 0 � um0 � vn0 + (m0 � 1)(n0 � 1) (16)It should be obvious that P�(u; v) � P(u; v). We will show something stronger.Let X 2 P�(u; v), and let Z be the unique point with integer entries suh thatX 2 H(Z). We will show Z 2 P(u; v). Then sine Z is an integer point byde�nition, we will have Z 2 �u;v.By de�nition of H(Z) and the fat that the Xi;j values are non-negative, weknow Zi;j � 0 for all 1 � i � m0 � 1, 1 � j � n0 � 1.Also, beause Zi;j � Xi;j for all 1 � i � m0 � 1, 1 � j � n0 � 1, therefore (14)and (15) imply that Z satis�es (10) and (11) for P(u; v).Finally, m0�1Xi=1 n0�1Xj=1 Zi;j � (m0�1Xi=1 n0�1Xj=1 Xi;j)� (m0 � 1)(n0 � 1);and ombining this with (16), we havem0�1Xi=1 n0�1Xj=1 Zi;j � N 0 � um0 � vn0;whih is (12).So Z 2 �u;v. Therefore P�(u; v) � [Z2�u;vH(Z).De�ne P+(u; v) to be the set of all real (m0� 1)(n0� 1)-dimensional points Xwith non-negative entries that satisfy the following inequalities:n0�1Xj=1 Xi;j� ui + (n0 � 1) for 1 � i � m0 � 1 (17)m0�1Xi=1 Xi;j� vj + (m0 � 1) for 1 � j � n0 � 1 (18)14



m0�1Xi=1 n0�1Xj=1 Xi;j�N 0 � um0 � vn0 (19)Clearly P(u; v) � P+(u; v). Now let Z 2 �u;v. Then Z is also in P(u; v) andsatis�es (10), (11), and (12). We will show that H(Z) � P+(u; v).Let X 2 H(Z), so therefore Xi;j � Zi;j for all 1 � i � m0 � 1, 1 � j � n0 � 1.Therefore all of the entries of X are non-negative.By (12) and by Xi;j � Zi;j, we have Pm0�1i=1 Pn0�1j=1 Xi;j � N 0� um0 � vn0, whihis (19).By de�nition of H(Z),n0�1Xj=1 Xi;j � (n0�1Xj=1 Zi;j) + (n0 � 1);and ombining this with (10), we obtain (17). By a similar argument, X sat-is�es (18).Therefore [Z2�u;vH(Z) � P+(u; v).Therefore we have shown thatP�(u; v)�[Z2�u;vH(Z) and[Z2�u;vH(Z)�P+(u; v);and therefore we have proved (13), as required.(ii): We de�ne Æ = �=20m0n0. Note that n�p� = �=20mn, whih is at most Æ.Thus np� � 1=Æ.For this setion of the proof, it will be useful to move the origin to a pointlying inside P(u; v). Let p0 be the real (m0 � 1)(n0 � 1)-dimensional pointde�ned by p0i;j =def uivj=N 0. We move the origin of P(u; v) to p0 as follows:substituting Y +p0 for X in (10), (11) and (12), we �nd that the pointX lies inP(u; v) i� the point Y = X�p0 satis�es Yi;j � �uivj=N 0 for all 1 � i � m0�1,1 � j � n0 � 1 and also satis�es the following system of inequalities:n0�1Xj=1 Yi;j� uivn0N 0 for 1 � i � m0 � 1 (20)m0�1Xi=1 Yi;j� um0vjN 0 for 1 � j � n0 � 1 (21)15



m0�1Xi=1 n0�1Xj=1 Yi;j��um0vn0N 0 (22)Let P0(u; v) be the set of real (m0 � 1)(n0 � 1)-dimensional points Y thatsatisfy (20)-(22) and satisfy Yi;j � �uivj=N 0 for all 1 � i � m0 � 1, 1 � j �n0 � 1. Clearly vol(P0(u; v)) = vol(P(u; v)):We now move the origin for the polytopes P�(u; v) and P+(u; v), using thesame point p0. We de�ne two more transformed onvex polytopes Q�(u; v) andQ+(u; v), wherevol(P�(u; v))=vol(Q�(u; v)) andvol(P+(u; v))=vol(Q+(u; v)):Q�(u; v) is the set of points Y satisfying Yi;j � �uivj=N 0 for all 1 � i � m0�1,1 � j � n0 � 1 and satisfyingn0�1Xj=1 Yi;j� uivn0N 0 for 1 � i � m0 � 1 (23)m0�1Xi=1 Yi;j� um0vjN 0 for 1 � j � n0 � 1 (24)m0�1Xi=1 n0�1Xj=1 Yi;j��um0vn0N 0 + (m0 � 1)(n0 � 1) (25)Q+(u; v) is the set of points Y satisfying Yi;j � �uivj=N 0 for all 1 � i � m0�1,1 � j � n0 � 1 and satisfyingn0�1Xj=1 Yi;j � uivn0N 0 + (n0 � 1) for 1 � i � m0 � 1 (26)m0�1Xi=1 Yi;j� um0vjN 0 + (m0 � 1) for 1 � j � n0 � 1 (27)m0�1Xi=1 n0�1Xj=1 Yi;j � �um0vn0N 0 (28)We prove (1 � Æ)P0(u; v) � Q�(u; v). Let Y 2 (1 � Æ)P0(u; v), so Y=(1 �16



Æ) 2 P0(u; v). We show that Y satis�es the lower bounds for Q�(u; v) andInequalities (23)-(25).Lower bounds: The lower bounds for P0(u; v) ensure that Yi;j � �(1�Æ)uivj=N 0for all 1 � i � m0�1, 1 � j � n0�1; therefore Yi;j � �uivj=N 0 holds trivially.Inequality (23): By (20),Pn0�1j=1 Yi;j � (1�Æ)uivn0=N 0, whih is less than uivn0=N 0.Inequality (24) follows by an similar argument.Inequality (25): By (22), we havem0�1Xi=1 n0�1Xj=1 Yi;j��um0vn0N 0 + Æum0vn0N 0 :By de�nition, Æum0vn0=N 0 � Ævn0=m0 � Ænp�1=2 (using n � m � m0). There-fore by de�nition of p and by np� � 1=Æ, we �ndÆum0vn0N 0 � Ænp�12 = Æn2(m�1)(p�+2)2� n4(m�1)2� (m0 � 1)(n0 � 1);where the seond last step follows by m � 2 and np� � 1=Æ, and the last stepfollows by m� 1 � 1 and n � m � 2. Thenm0�1Xi=1 n0�1Xj=1 Yi;j��um0vn0N 0 + (m0 � 1)(n0 � 1);whih is (25).Now we show Q+(u; v) � (1+Æ)P0(u; v). Let Y 2 Q+(u; v). We show that Y=(1+Æ) satis�es the lower bounds for P0(u; v) and Inequalities (20)-(22).Lower bounds: By de�nition of Q+(u; v), we know Yi;j � �uivj=N 0 for all1 � i � m0 � 1, 1 � j � n0 � 1. Then Yi;j � �(1 + Æ)uivj=N 0 holds trivially,so Y=(1 + Æ) satis�es the lower bounds for P0(u; v).Inequality (20): By (26),n0�1Xj=1 Yi;j� uivn0N 0 + (n0 � 1): 17



De�ne Æ0 = (n0 � 1)N 0=uivn0, so we haven0�1Xj=1 Yi;j� (1 + Æ0)uivn0N 0 :Then byN 0=vn0 � n0 and ui � nq, we have Æ0 � 1=nq�2. By de�nition q�2 = p�,so we have Æ0 � Æ. Therefore Y=(1 + Æ) satis�es (20).Inequality (21): By (27),m0�1Xi=1 Yi;j� um0vjN 0 + (m0 � 1):De�ne Æ00 = (m0 � 1)N 0=um0vj, and writem0�1Xi=1 Yi;j� (1 + Æ00)um0vjN 0 :ApplyingN 0=um0 � m0 and vj � np=2, and using our assumptions thatm0 � mand m � n, we have Æ00 � 2=np�2. By de�nition of p and by n�p� � Æ, we haveÆ00 � Æ, and Y=(1 + Æ) satis�es (21).Inequality (22): By (28), Pm0i=1Pn0�1j=1 Yi;j � �um0vn0=N 0. But �um0vn0=N 0 ��(1 + Æ)um0vn0=N 0, so Y=(1 + Æ) satis�es (22).Now we have (1 � Æ)P0(u; v) � Q�(u; v) and Q+(u; v) � (1 + Æ)P0(u; v), andthis givesvol((1� Æ)P0(u; v))� vol(Q�(u; v)) andvol(Q+(u; v))� vol((1 + Æ)P0(u; v)):Alsovol((1� Æ)P0(u; v))= (1� Æ)(m0�1)(n0�1)vol(P0(u; v));vol((1 + Æ)P0(u; v))= (1 + Æ)(m0�1)(n0�1)vol(P0(u; v)):But (1 � Æ)(m0�1)(n0�1) � (1 � (m0 � 1)(n0 � 1)Æ), and by the de�nition of Æ,this is at least (1� �=20). Therefore(1� �15)vol(P0(u; v))� vol(Q�(u; v)):18



Then by vol(P0(u; v)) = vol(P(u; v)) and vol(Q�(u; v)) = vol(P�(u; v)), wehave(1� �15)vol(P(u; v))� vol(P�(u; v)): (29)Also (1 + Æ)(m0�1)(n0�1) � e�=20 (using (1 + x=n)n � ex), and sine � < 1, thisis at most (1 + �=15). Thereforevol(Q+(u; v))� (1 + �15)vol(P0(u; v));and by vol(P0(u; v)) = vol(P(u; v)) and vol(Q+(u; v)) = vol(P+(u; v)),vol(P+(u; v))� (1 + �15)vol(P(u; v)): (30)Combining (30) and (29) with (13), we have our result. 24 Approximating the volume of a onvex body by another onvexbodyIn this setion we prove the seond laim made in Case 3 of Step 2 of ouralgorithm. We will use notation from Setions 2 and 3 and some of the ideasfrom Setion 3.Theorem 4 Let (u1; : : : ; um0) and (v1; : : : ; vn0) be lists of row and olumnsums suh that m0 � m� 1, n0 � n, ui � nq for all i and vj � np=2 for all j.Suppose that (bv1; : : : ; bvn0) is another list of olumn sums satisfying bvj � np=2for all j, and also satisfying jvj � bvjj � R for all j. Thenvol(P(u; v))� (1 + �15)vol(P(u; bv)):Proof: Again, let Æ = �=20m0n0.Assume without loss of generality that vn0 is the largest olumn sum amongthe vj.Let p0 be the real (m0�1)(n0�1)-dimensional point de�ned by p0i;j =def uivj=N 0.We will use the same trik that we used in part (ii) of Theorem 3, and onsiderthe onvex polytope P0(u; v) entred at this point.19



Remember that vol(P0(u; v)) = vol(P(u; v)).We now onstrut P0(u; bv) by taking the idential point p0 that we used forP0(u; v) and letting Y 2 P0(u; bv) i� Y + p0 2 P(u; bv) (remember that thisenter point p0 is de�ned in terms of the ui and vj values, rather than theui and bvj values). Then we onsider (1 + Æ)P0(u; bv). Then Y is an element of(1 + Æ)P0(u; bv) i� Yi;j � �(1 + Æ)uivj=N 0 for all i; j andn0�1Xj=1 Yi;j � (1 + Æ)uivn0N 0 for 1 � i � m0 � 1 (31)m0�1Xi=1 Yi;j � (1 + Æ)((bvj � vj) + um0vjN 0 ) for 1 � j � n0 � 1 (32)m0�1Xi=1 n0�1Xj=1 Yi;j � (1 + Æ)((vn0 � bvn0)� um0vn0N 0 ) (33)We will show P0(u; v) � (1+Æ)P0(u; bv). Within this proof we will show that thequantity (vn0 � bvn0)�um0vn0=N 0 (lower bound on Pm0�1i=1 Pn0�1j=1 Yi;j for P0(u; bv))is negative and that eah of the (bvj � vj)+ um0vj=N 0 values (upper bounds onPm0�1i=1 Yi;j for P0(u; bv)) is positive.Let Y be any element of P0(u; v), so Y satis�es (20)-(22) and Yi;j � �uivj=N 0.We prove Y 2 (1 + Æ)P0(u; bv) by heking that it satis�es the four types ofonstraints for (1+ Æ)P0(u; bv): Inequalities (31)-(33), and the lower bounds onthe entries of Y .Lower bounds: We know Yi;j � �uivj=N 0 for all 1 � i � m0�1, 1 � j � n0�1.Then Yi;j � �(1 + Æ)uivj=N 0, as required.Inequality (31): By (20) we know Pn0�1j=1 Yi;j � uivn0=N 0, and by Æ > 0, thistrivially implies (31).Inequality (32): Consider the quantity (1+ Æ)(bvj � vj) + Æum0vj=N 0. We knowthat bvj � vj � �R and thatum0vj=N 0 � vj=m0 � np=2m0:Therefore (1+Æ)(bvj�vj)+Æum0vj=N 0 is at least as big as Ænp=2m0�2R. By (8)and by np� � 1=Æ,Ænp=2m0 � 2R=R(Ænp=2m0R � 2)�R(Æn(p�1)=2=2m0 � 2)=R(Æn(m�1)(p�+2)=2m0 � 2)20



�R(Ænp�n2(m�1)=2m0 � 2)�R(n2(m�1)=2m0 � 2)� 0;where the last step follows by n � m � 2 and m0 � m� 1. By (21), we knowPm0�1i=1 Yi;j is bounded above by um0vj=N 0. Therefore we havem0�1Xi=1 Yi;j� um0vjN 0 + (1 + Æ)(bvj � vj) + Æum0vjN 0=(1 + Æ)((bvj � vj) + um0vjN 0 );so (32) is satis�ed.Inequality (33): Consider (1 + Æ)(vn0 � bvn0)� Æum0vn0=N 0. Using vn0 � bvn0 � Rand um0vn0=N 0 � vn0=m0 � np=2m0, we have(1 + Æ)(vn0 � bvn0)� Æum0vn0=N 0� 2R� Ænp=2m0� 0beause (8) and np� � 1=Æ imply that 2R� Ænp=2m0 is negative. By (22), thedouble sum Pm0�1i=1 Pn0�1j=1 Yi;j is bounded below by �um0vn0=N 0. Thereforem0�1Xi=1 n0�1Xj=1 Yi;j��um0vn0N 0 + (1 + Æ)(vn0 � bvn0)� Æum0vn0N 0=(1 + Æ)((vn0 � bvn0)� um0vn0N 0 )so (33) is satis�ed.Then P0(u; v) � (1 + Æ)P0(u; bv) and thereforevol(P0(u; v))� (1 + Æ)(m0�1)(n0�1)vol(P0(u; bv)):By the same argument given at the end of Theorem 3, we obtainvol(P0(u; v))� (1 + �15)vol(P0(u; bv));or equivalently,vol(P(u; v))� (1 + �15)vol(P(u; bv)):21



2
5 Generating a ontingeny table almost uniformly at randomAn almost-uniform sampler for ontingeny tables is an algorithm that takesa list of row sums r, a list of olumn sums  and an error parameter " 2 (0; 1),and returns an element X 2 �r; with probability �(X), suh thatXX2�r; j�(X)� j�r;j�1j � ":The sampler is a polynomial almost-uniform sampler (paus) if it runs in timepolynomial in the number of rows and olumns, the table sum, and "�1. Thesampler is a fully polynomial almost-uniform sampler (fpaus) if the dependeneon the error parameter is polynomial in (log "�1).The error term PX2�r; j�(X)� j�r;j�1j is the variation distane between theoutput distribution of our sampler and the uniform distribution on �r;.We now desribe how to onvert our fpras into a paus for the set of ontingenytables with row sums r and olumn sums , when the number of rows is on-stant. If " < 1, we show how to generate a point with probabilities within 1�"of the uniform distribution on the set of ontingeny tables. We are urrentlyunable to improve this to an fpaus, sine the ontingeny table problem is notself-reduible, as required by the methods of [15℄, nor does it apparently evensatisfy the weaker ondition of [8℄. This is a somewhat surprising tehnialdiÆulty, given that it has reently been shown that a fpaus does in fat existfor this problem [2℄.Let � = "=5. We �rst perform Step 1 from Setion 2 and partition the olumnsinto small olumns and large olumns.S is the set of ordered partitions s of Pkj=1 j into m parts suh that si � rifor all 1 � i � m.For any 1 � h � k, Sh is the set of ordered partitions q of Phj=1 j into mparts.The dynami programming algorithm onstruts j�s;(1;:::;k)j for all s 2 S. Italso onstruts j�q;(1;:::;h)j, for every q 2 Sh and 1 � h � k.Carrying out Step 2 of our original algorithm, we obtain an approximation toSr�s;(k+1;:::;n), for every s 2 S, leading to an approximation of Sr;.22



Let s be any ordered partition of Pkj=1 j into m parts suh that si � rifor all 1 � i � m. Then Equation (1) of Observation 1 implies that if wehoose a ontingeny table X aording to the uniform distribution on �r;,the probability �(s) that X has the partial row sums s is�(s) = j�s;(1;:::;k)j � j�r�s;(k+1;:::;n)jj�r;j :De�ne b�(s) by b�(s) = j�s;(1;:::;k)j � Sr�s;(k+1;:::;n)Sr; :Sine we have an fpras, we an ensure that jb�(s)=�(s) � 1j � � for all s 2 S,with arbitrarily high probability. Therefore if we an(i) hoose s 2 S aording to the probabilities b�(s),(ii) hoose an element of �s;(1;:::;k) within 1� � of the uniform probability,(iii) hoose an element of �r�s;(k+1;:::;n) uniformly within 1� � of the uniformprobability,we will generate from a distribution � with probabilities within (1� �)3 of theuniform distribution. Therefore the probabilities of our distribution � will alllie within (1� 4�) of j�r;j�1 (using the fat that � = "=5 � 1=5).Clearly (i) an be aomplished, sine we have expliitly omputed the nu-merators and denominator of all the b�(s) values.We now show that we an generate a sample uniformly at random from�s;(1;:::;k). We onstrut the values for the hth olumn of X in dereasingorder. Suppose we have already onstruted olumns h + 2; : : : ; k of the ta-ble and that s is the urrent partial row sum for the �rst h + 1 rows. Fromequation (3), we hoose q 2 Sh (0 � qi � si, i 2 [m℄) with probabilityj�q;(1;:::;h)j=j�s;(1;:::;h+1)j, and set olumn h to (s � q). We iterate this untilall the entries in the small olumns have been assigned.We now omplete the ` small rows. These are hosen independently to beany ordered partition of r0i into n0 parts (i 2 [`℄). This an be done as follows.Choose a sample of size (n0�1) uniformly without replaement from [r0i+n0�1℄,and sort to give k1 < k2 � � � < kn0�1. Let k0 = 0, kn0 = r0i+n0. Then the elementsof the partition are (kj � kj�1 � 1) (j 2 [n0℄).The departure from uniform of the points in the small rows and olumnswill be very small. (It arises only from the preision of our random numbergeneration.) We an ertainly ensure that all probabilities are within 1� � oftheir target values.We now subtrat the partial olumn totals over the small olumns from the23



large olumn totals. We now have to generate an integer point uniformly in apolytope of the form given in (10){(12). Sine all row and olumn totals aresuÆiently large, we an do this by the method given in [11℄. Hene we anobtain a sample point with probabilities within 1�� of the uniform distributionon this set.Finally, to show that the variation distane between the uniform distributionand our output distribution � is bounded, note that by (i), (ii) and (iii) wehave jj�r;j�1 � �(X)j � 4�j�r;j�1 for all X 2 �r;. Therefore the variationdistane satis�esXX2�r; jj�r;j�1 � �(X)j � XX2�r; 4�j�r;j�1 = 4� < ";as required.AknowledgmentsWe are grateful to Leslie Goldberg, Catherine Greenhill and Mark Jerrumfor useful disussions onerning the results presented in this paper, and forreading a �rst draft.Referenes[1℄ A.I. Barvinok, A polynomial-time algorithm for ounting integral points inpolyhedra when the dimension is �xed. Mathematis of Operations Researh,19(4), 1994, pp. 769{779.[2℄ M. Cryan, M. Dyer, L. Goldberg, M. Jerrum and R. Martin, Rapidly mixingMarkov hains for sampling ontingeny tables with a onstant number of rows.Proeedings of the 43rd IEEE Symposium on Foundations of Computer Siene,2002, pp. 711{720.[3℄ F.K.R Chung, R.L. Graham and S.-T. Yau, On sampling with Markov hains.Random Strutures & Algorithms, 9(1{2), 1996, pp. 55{77.[4℄ P. Diaonis and B. Efron, Testing for independene in a two-way table: newinterpretations of the hi-square statisti (with disussion). Annals of Statistis,13, 1995, pp. 845{913.[5℄ P. Diaonis and A. Gangolli, Retangular arrays with �xed margins, in:D. Aldous, P.P. Varaiya, J. Spener and J.M. Steele (Eds.), Disrete Probabilityand Algorithms, IMA Volumes on Mathematis and its Appliations, 72,Springer, New York, 1995, pp. 15{41.24
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