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tWe 
onsider the problem of 
ounting the number of 
ontingen
y tables with givenrow and 
olumn sums. This problem is known to be #P -
omplete, even when thereare only two rows [11℄. In this paper we present the �rst fully-polynomial randomizedapproximation s
heme for 
ounting 
ontingen
y tables when the number of rows is
onstant. A novel feature of our algorithm is that it is a hybrid of an exa
t 
ountingte
hnique with an approximation algorithm, giving two distin
t phases. In the �rst,the 
olumns are partitioned into \small" and \large". We show that the number of
ontingen
y tables 
an be expressed as the weighted sum of a polynomial numberof new instan
es of the problem, where ea
h instan
e 
onsists of some new rowsums and the original large 
olumn sums. In the se
ond phase, we show how toapproximately 
ount 
ontingen
y tables when all the 
olumn sums are large. In this
ase, we show that the solution lies in approximating the volume of a single 
onvexbody, a problem whi
h is known to be solvable in polynomial time [7℄.Key words: Contingen
y tables, approximate 
ounting, randomized algorithms.
1 Introdu
tionSuppose we are given two ve
tors of positive integers, r = (r1; : : : ; rm) and
 = (
1; : : : ; 
n), su
h thatPmi=1 ri = Pnj=1 
j. We say that anm�nmatrix [Xi;j℄of non-negative integers is a 
ontingen
y table with row sums r and 
olumnsums 
 if Pnj=1Xi;j = ri for every row i and Pmi=1Xi;j = 
j for every 
olumn j.We denote the set of all 
ontingen
y tables by �r;
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It is well-known that for any input satisfying Pmi=1 ri = Pnj=1 
j, there existsat least one 
ontingen
y table with row sums r and 
olumn sums 
 (see, forexample, Dia
onis and Gangolli [5℄). It is easy to 
onstru
t one element of �r;
using the \North-West 
orner" rule (see, for example, Hadley [12℄).In this paper we 
onsider the problem of approximately 
ounting the set of all
ontingen
y tables with spe
i�ed row and 
olumn sums. We present the �rstfully polynomial randomized approximation s
heme (fpras) [17℄ for 
ountingsu
h tables when the number of rows is 
onstant. The de�nition of an fprashas been given elsewhere but we in
lude it here to be pre
ise. An fpras for
ontingen
y tables is an algorithm that takes a list of row sums r and a listof 
olumn sums 
 as input, together with an error parameter � 2 (0; 1). Thealgorithmmust satisfy two 
onditions to be an fpras. Firstly, it must output anapproximate value that lies within (1� �)j�r;
j, with high probability. Se
ond,its running time must be polynomial in the size of the input and also in ��1.Here we present an fpras for the 
ase when m is 
onstant.Our algorithm also implies a polynomial time pro
edure for the 
losely relatedproblem of sampling su
h a table almost uniformly at random. See the surveysof Jerrum and Sin
lair [14℄, or Dyer and Greenhill [8℄, for more de�nitions andba
kground about approximate 
ounting and sampling.The 
ounting problem is of 
onsiderable interest, both from the theoreti
al andpra
ti
al viewpoints. The thesis of Mount provides mu
h useful informationon this problem and its relatives [20℄. Dyer, Kannan and Mount [11℄ haveshown that the problem of 
ounting 
ontingen
y tables is #P -
omplete evenif there are only two rows; therefore, we do not expe
t to be able to exa
tly
ount the number of 
ontingen
y tables in polynomial-time, even for two-rowedtables. The existen
e of an fpras for 
ounting 
ontingen
y tables has beenan open question for several years. For example, the 1997 survey by Jerrumand Sin
lair [14℄ listed it as an important open problem in the 
omplexity ofapproximate 
ounting.Pra
ti
ally, 
ontingen
y tables play an important role in statisti
s, where theyare used to tabulate the results of surveys. The analysis of su
h tables providesstrong motivation for the problem of eÆ
iently sampling 
ontingen
y tableswith given row and 
olumn sums almost uniformly at random. Dia
onis andEfron [4℄ provide many details on the pra
ti
al motivation for the samplingproblem.Before presenting our algorithm, we summarize previous work on the problemof 
ounting 
ontingen
y tables. The �rst polynomial-time algorithm for 
ount-ing 
ontingen
y tables was due to Barvinok [1℄, who proved that the numberof 
ontingen
y tables 
an be 
ounted exa
tly in polynomial-time, when thenumber of rows and 
olumns is 
onstant (see also [10℄).2



Most other early papers on the subje
t addressed the sampling problem. Thepaper of Dia
onis and Gangolli [5℄ seems to be the �rst to des
ribe a Markov
hain on the spa
e of 
ontingen
y tables whi
h 
onverges to the uniform distri-bution. The 
onvergen
e rate of this 
hain was subsequently analyzed by Dia-
onis and Salo�-Coste [6℄ for the 
ase when the number of rows and 
olumnsis �xed and by Hernek [13℄ for the 
ase when there are two rows. The analysesfor both 
ases showed that the 
hain mixed in pseudopolynomial time (therunning time is polynomial in the table sum). Chung et al. [3℄ gave a Markov
hain for 
ontingen
y tables that 
onverges in pseudopolynomial time for anyrow and 
olumn sums whi
h are suÆ
iently large.The �rst polynomial-time algorithm for approximately 
ounting 
ontingen
ytables with unbounded dimension was the algorithm of Dyer, Kannan andMount [11℄. They (i) gave a sampling algorithm that 
onverges in polyno-mial time for any input with row sums of size 
(n2m) and 
olumn sums ofsize 
(nm2); (ii) showed how to use the sampling algorithm to approximately
ount the number of 
ontingen
y tables for inputs satisfying the same 
on-straints. This result was later re�ned by Morris [19℄, who showed that theresult also holds when the row sums are 
(n3=2m logm) and the 
olumn sumsare 
(m3=2n logn). Dyer and Greenhill [9℄ gave a polynomial-time algorithmfor 
ounting 
ontingen
y tables when the table has two rows. They �rst de-�ned a Markov 
hain for sampling from the set of 
ontingen
y tables withthe given row and 
olumn sums, and showed that this 
hain 
onverges inpolynomial-time when the input has two rows. Then they showed how to usetheir sampling algorithm to obtain an fpras for the 
orresponding 
ountingproblem. The result we prove here is a generalization of Dyer and Greenhill's(from two rows to m rows), but we use an entirely di�erent approa
h.A novel feature of our algorithm, whi
h is des
ribed in Se
tion 2, is that it isa hybrid of an exa
t 
ounting algorithm and an approximation algorithm. It
an be viewed as having two phases. The input is a list 
ontaining a 
onstantnumber of row sums, a list of 
olumn sums, and an error parameter � > 0. Inthe �rst phase of the algorithm (Step 1 below) we partition the 
olumns ofthe table into \small 
olumns" and \large 
olumns". Every 
ontingen
y tablefor the given row and 
olumn sums 
an be split into two smaller tables { atable on the small 
olumns (with some list of partial row sums), and a tableon the large 
olumns (whose list of row sums is the original list of row sumsless the list of partial row sums). We show that the number of di�erent lists ofpartial row sums that may o

ur on the table of small 
olumns is polynomial inthe number of 
olumns and ��1. By dynami
 programming, we 
an 
ount thenumber of 
ontingen
y tables on the small 
olumns for any given list of partialrow sums in polynomial time. We then write the number of 
ontingen
y tablesfor the original input as the weighted sum (ea
h weight is the 
ount 
omputedfor some list of partial row sums) of a polynomial number of terms, whereea
h term is the number of 
ontingen
y tables for some list of row sums and3



the large 
olumns.In the se
ond phase of the algorithm (Step 2), we approximately 
ount 
ontin-gen
y tables for ea
h of the new instan
es of the problem generated in the �rstphase. Consider any spe
i�
 instan
e. We know the number of rows is 
onstantand all the 
olumns are large. We partition the rows using a di�erent methodto that used for the 
olumns. We de�ne a \gap fa
tor" whi
h is suÆ
ientlylarge. Then we partition the rows into small rows and substantially larger rows{ ea
h of the large rows must be larger than the produ
t of any small row andthe gap fa
tor. Note that the number of 
ontingen
y tables for our given rowand 
olumn sums 
an be written as the sum, over all possible partial 
olumnsums for the small rows, of the number of 
ontingen
y tables for the given rowand 
olumn sums whi
h have these partial 
olumn sums. Our partitioning ofthe rows ensures that any partial 
olumn sums will be small in 
omparisonto the large 
olumn sums. In Se
tions 3 and 4 we show that in this 
ase thenumber of 
ontingen
y tables with given partial 
olumn sums does not de-pend mu
h on the spe
i�
 partial 
olumn sums that are 
onsidered. Thereforewe 
an estimate the number of 
ontingen
y tables by 
hoosing a �xed listof partial 
olumn sums, and 
al
ulating the produ
t of the total number oftables for the small rows (with any partial 
olumn sums) and the number of
ontingen
y tables for our instan
e whi
h have the �xed partial 
olumn sums.The total number of tables for the small rows 
an be 
al
ulated using binomial
oeÆ
ients. The se
ond quantity we need to 
ompute is a single instan
e ofthe problem of 
ounting 
ontingen
y tables, where all the 
olumns are largeand all the rows are large. In Se
tion 3 we show that, in this 
ase, the numberof 
ontingen
y tables is very 
lose to the volume of a 
onvex polytope. Weuse the polynomial-time algorithm of Kannan, Lov�asz and Simonovits [16℄,for approximating the volume of 
onvex bodies, to estimate the volume of thispolytope.For many 
ombinatorial problems, the problem of approximately 
ounting thenumber of dis
rete stru
tures satisfying a given property is 
losely relatedto the problem of sampling one dis
rete stru
ture with this property almostuniformly at random. In random sampling, we usually want to 
onstru
t a(fully) polynomial almost-uniform sampler (see, for example, Jerrum, Valiantand Vazirani [15℄ , Sin
lair and Jerrum [21℄). It is well-known that for a spe-
ial 
lass of problems known as self-redu
ible problems, the existen
e of apolynomial-time algorithm for approximate 
ounting implies the existen
e ofa fully polynomial almost-uniform sampler [15,21℄. The 
ontingen
y tablesproblem is unusual be
ause it is not known to satisfy the 
ondition of self-redu
ibility (or a more general 
ondition dis
ussed by Dyer and Greenhill [8℄).However, in Se
tion 5 we will show that our fpras 
an be used to obtain apolynomial almost-uniform sampler for sampling almost uniformly at randomfrom the spa
e of 
ontingen
y tables with given row and 
olumn sums, whenthe number of rows is 
onstant. 4



2 The AlgorithmBefore presenting the algorithm, we introdu
e some notation. First, for anylists r = (r1; : : : ; rm) and 
 = (
1; : : : ; 
n) of non-negative integers, we say thata m� n integer matrix X is a 
ontingen
y table with row sums r and 
olumnsums 
 i�Xi;j � 0 for all i; j;nXj=1Xi;j = ri for all i;mXi=1Xi;j = 
j for all jWe let �r;
 denote the set of all 
ontingen
y tables with row sums r and
olumn sums 
. The 
ardinality of this set, denoted j�r;
j, is the number of
ontingen
y tables with the given row and 
olumn sums. We always assumethat Pmi=1 ri is equal to Pnj=1 
j (otherwise �r;
 is empty) and denote this total(also 
alled the table sum) by N .Throughout this paper we will assume that m � 2 is a 
onstant. We assumewithout loss of generality that n � m.Our algorithm takes a list r = (r1; : : : ; rm) of row sums and a list 
 =(
1; : : : ; 
n) of 
olumn sums, an error parameter � satisfying 0 < � < 1 and a
on�den
e parameter � satisfying 0 < � < 1. The algorithm runs in time poly-nomial in n, logN , ��1 and log ��1 and returns an estimate Sr;
. In Se
tions 3and 4, we will prove that jSr;
�j�r;
jj � �j�r;
j with probability at least 1��.The following quantities will be useful in des
ribing the algorithm:p� = logn(20nm=�)p = 2(m� 1)(p� + 2) + 1q = (p� 1)=2(m� 1)Note that q is equal to p� + 2.We will apply the following Observation (
f. page 63 of Mount [20℄):Observation 1 Let r = (r1; : : : ; rm) and 
 = (
1; : : : ; 
n) be two lists of posi-tive integers satisfying Pmi=1 ri = Pnj=1 
j.Let 1 � k < n. Let S be the set of ordered partitions s of Pkj=1 
j into m partsthat satisfy si � ri for all 1 � i � m. Then5



j�r;
j=Xs2S j�s;(
1;:::;
k)j � j�r�s;(
k+1;:::;
n)j (1)Let 1 � ` < m. Let T be the set of ordered partitions t of Pì=1 ri into n partsthat satisfy tj � 
j for all 1 � j � n. Thenj�r;
j=Xt2T j�(r1;:::;r`);tj � j�(r`+1;:::;rm);
�tj (2)The following observation will also be usefulObservation 2 Let m � 2 be an integer, and let M be another positive inte-ger. Then the number of ordered partitions of M into m parts is M +m� 1m� 1 ! � 2Mm�1Our algorithm is based on Observation 1.In Step 1 of the algorithm, we 
hoose an appropriate value for k and 
al
ulatej�s;(
1;:::;
k)j exa
tly for all s 2 S.In Step 2 we approximate j�r�s;(
k+1;:::;
n)j within (1� �) of its true value withhigh probability, for every s 2 S.In Step 3 we apply Equation (1) to estimate �r;
 within (1 � �) with highprobability.2.1 Step 1Assume that (
1; : : : ; 
n) is sorted in non-de
reasing order. Let k be the indexsu
h that 
j � np for all j � k and 
j > np for all j � k + 1.Columns 
1; : : : ; 
k are the \small 
olumns" of the table.Columns 
k+1; : : : ; 
n are the \large 
olumns".In this step of our algorithm, we will use dynami
 programming to 
al
ulatej�s;(
1;:::;
k)j for every partition s 2 S. In fa
t, our algorithm will 
onsider ea
h
olumn index h (1 � h � k) in in
reasing order, and 
ompute j�s;(
1;:::;
h)j forevery ordered partition s of Phj=1 
j into m parts.We will let Sh represent the set of ordered partitions of Phj=1 
j into m parts,for 1 � h � k. 6



If h = 1, then j�s;(
1)j = 1 for every partition s of 
1 into m parts. Note thatbe
ause 
1 � np, then by Observation 2, the number of ordered partitions wewill 
onsider is at most 2(np)m.If 2 � h � k, then we apply Equation (1) of Observation 1. Let s 2 Sh. For us,the values of the parameters n, k and r of Equation (1) are bn = h; bk = h� 1and br = s. Then by Equation (1) we havej�s;(
1;:::;
h)j = Xq2Sh�1 j�q;(
1;:::;
h�1)j � j�s�q;
hj= Xq2Sh�1;qi�si for all i j�q;(
1;:::;
h�1)j; (3)sin
e �s�q;
h = 1 if si � qi � 0 for all 1 � i � m (the single \table" is givenby Xi;h = si � qi for all i) and �s�q;
h = 0 otherwise. Therefore we use thej�q;(
1;:::;
h�1)j values (
onstru
ted in the previous phase of our algorithm) toobtain j�s;(
1;:::;
h)j.Note that be
ause 
j � np for all j � k, thereforehXj=1 
j � hnp � np+1: (4)for any 1 � h � k. By Observation 2 and by Inequality (4), the numberof ordered partitions of Phj=1 
j into m parts is at most 2(np+1)m. ThereforejShj � 2n2m(p+1), whi
h is polynomial in n and ��1.Therefore for any parti
ular h � k, we perform O(nm(p+1)) operations to
ompute j�s;(
1;:::;
h)j; therefore using O(n2m(p+1)) arithmeti
 operations, we
ompute a table 
ontaining j�s;(
1;:::;
h)j for every ordered partition s ofPhj=1 
jintom parts. Sin
e k � n, this means that we 
ompute the table of j�s;(
1;:::;
k)jusing O(n2m(p+1)+1) arithmeti
 operations.By de�nition, p+ 1 = 2(m� 1)(p� + 2) + 2 = 2(m� 1)p� + 4m� 2. Thereforenp+1=�20nm� �2(m�1) n4m�2:Therefore Step 1 usesO n12m2�4m2 ! (5)7



arithmeti
 operations to 
ompute the set of all j�s;(
1;:::;
k)j values for s 2 S.We know that none of the integers we 
ompute is greater than Nnm, thereforeea
h addition or 
omparison performed during Step 1 
an be 
arried out inO(n logN) time.We also know jSj � 2(np+1)m, and therefore jSj isO n6m2�2m2 ! : (6)2.2 Step 2In this step we show how to approximate the value of j�r�s;(
k+1;:::;
n)j within amultipli
ative fa
tor of (1� �) of its true value in polynomial time, with highprobability, for any given s 2 S.First let �0 = �=jSj, where � is the original failure probability given as input tothe algorithm. By (6) this implies �0 = ��2m2=n6m2d, where d is the 
onstantinside the O in (6).Sort the rows of r� s into non-de
reasing order and rename this ve
tor by r0.Let n0 denote n� k, and rename the (
k+1; : : : ; 
n) ve
tor by (
01; : : : ; 
0n0).We will estimate j�r0;
0j.Let 
N = Pn0j=1 
0j be the table sum on the large 
olumns.Now 
lassify the rows of r0 as \small rows" or \large rows" as follows: If r01 � nq,then we 
lassify all the rows as large rows. Otherwise r01 < nq. Then let ` bethe smallest index su
h that r 0̀+1 > nqr 0̀ (if su
h an ` exists). The rows 1 to `are the \small rows" and the rows greater than ` are the \large rows".De�ne R = Pì=1 r0i.We 
onsider three 
ases.Case 1: All the rows are large rows (r01 � nq). In this 
ase, the row sums r0and the 
olumn sums 
0 satisfy the 
onditions of Theorem 3 (see Se
tion 3).Therefore, by Theorem 3, the value of j�r0;
0j is within (1��=15) of the volumeof the 
onvex polytope P(r0; 
0) de�ned in Se
tion 3. We use the polynomial-time algorithm of Kannan, Lov�asz and Simonovits [16℄ for approximating thevolume of a 
onvex body, to approximate vol(P(r0; 
0)) within a fa
tor of (1�8



�=5), with probability at least 1��0. Thus we approximate j�r0;
0j within (1��)with probability at least 1� �0.Case 2: All the rows are small rows. We show this 
ase 
annot o

ur. Supposethis is a possibility. Sin
e all the rows are small rows, the table sum 
N is equalto R. This table sum is bounded above by mnqm. By de�nition of q,mnqm =mn p�12(m�1)m=mn p�12 (1+1=(m�1))�mnp�1 be
ause m � 2�np be
ause m � nTherefore if all the rows were small rows, the table sum on the large 
olumnswould be at most np. However, sin
e all the large 
olumns were assumedto have 
j > np, 
N � np implies that there are no large 
olumns. This isa 
ontradi
tion (if there are no large 
olumns, then j�r;
j would have been
omputed exa
tly by Step 1, and Step 2 would not be 
arried out).Case 3: There are small rows and large rows. The quantity R plays a 
entralrole in the analysis for this 
ase. Before pro
eeding, note that R � Pì=1 nqi,whi
h is at most (m� 1)nq(m�1) (sin
e ` < m, we have at least one large row).Substituting for q and then for p,R � (m� 1)n(p�1)=2= (m� 1)n(m�1)(p�+2) (7)np=R � n(p�1)=2 = n(m�1)(p�+2) (8)Now we show how to approximate j�r0;
0j for this 
ase. By Equation (2) ofObservation 1, we writej�r0;
0j=Xt j�(r01;:::;r0̀ );tj � j�(r0̀+1;:::;r0m);
0�tj (9)where the sum is taken over all partitions t of the value R into a list of n0 non-negative integers.From here on we will denote the large row sums (r 0̀+1; : : : ; r0m) by (u1; : : : ; um0),and any list of modi�ed large 
olumn sums 
0� t by (v1; : : : ; vn0). By 
onstru
-tion, every ui is at least nq. To obtain a lower bound for the vj values, rememberthat by 
onstru
tion 
j � np for every 1 � j � n0. Also we know tj � R forevery 1 � j � n0. Therefore every vj value is at least as big as np � R, andby (8), this is at least np=2. 9



In Se
tion 3, we will de�ne a 
onvex polytope P(u; v) in (m0 � 1)(n0 � 1)-dimensional spa
e for any large row sums u and modi�ed large 
olumn sums v.Let vol(P(u; v)) denote the the volume of the 
onvex polytope P(u; v). We willprove the following theorems:Theorem 3 For any list u of large row sums and any list v of modi�ed large
olumn sums, j�u;vj lies within (1� �=15) of vol(P(u; v)) (See Se
tion 3).Theorem 4 Let u be a list of large row sums and let v and bv be two lists ofmodi�ed large 
olumn sums. Then vol(P(u; v)) � (1 + �=15)vol(P(u; bv)) (SeeSe
tion 4).Now we show that Theorems 3 and 4 allow us to approximate all of thedi�erent j�u;vj values (there 
ould be exponentially many of these) in a singlestep. De�ne some �xed list of modi�ed 
olumn sums bv by 
hoosing an arbitrarypartition bt of R, and de�ning bv as 
0 � bt. Let v be any other list of modi�ed
olumn sums. By Theorem 3 we havej�u;vj � (1 + �=15)vol(P(u; v))� (1 + �=15)2vol(P(u; bv))� (1 + �=5)vol(P(u; bv))where the se
ond line follows by Theorem 4. Also by Theorems 3 and 4 wehavej�u;vj � (1� �=15)vol(P(u; v))� (1� �=15)vol(P(u; bv))=(1 + �=15)� (1� �=5)vol(P(u; bv)):By (9), the produ
t of vol(P(u; bv)) and Pt j�(r01;:::;r0̀ );tj approximates j�r0;
0jwithin (1� �=5).We 
al
ulate Pt j�(r01;:::;r0̀ );tj dire
tly as follows: Sin
e we are summing over allpossible 
olumn sums t, we are simply 
ounting the number of `�n0 tables withthe row sums (r01; : : : ; r 0̀) (and any 
olumn sums). This is equal to the produ
tof the terms �r0i+n0�1n0�1 � over all i su
h that 1 � i � ` (the term for i 
ountsthe number of ways of partitioning r0i into an ordered list of n0 non-negativeintegers).We use the algorithm of Kannan, Lov�asz and Simonovits [16℄ to approximatevol(P(u; bv)) within a fa
tor of (1� �=5) with probability at least 1��0. Takingthe produ
t of this value andPt j�(r01;:::;r0̀ );tj, we will approximate j�r0;
0j withina fa
tor of (1� �), with probability at least 1� �0.10



To bound the running time for Step 2 of the algorithm, we use the O� notation,where we ignore logarithmi
 fa
tors as well as 
onstant fa
tors.The algorithm of Kannan, Lov�asz and Simonovits [16℄ approximates the vol-ume of a 
onvex body P in d dimensions to within (1��) of its true value withhigh probability by sampling O�(d5=�2) random d-dimensional points and forea
h of these points, performing an ora
le 
all to test whether the point liesin the 
onvex body. The total number of random bits used to generate all thepoints that are tested is O�(d6=�2).The 
onvex polytopes that we 
onstru
t (either in Case 1 or Case 3) havedimension less than or equal to nm. Also, for the 
onvex polytopes P(u; bv)that we 
onsider (de�ned in Se
tion 3), we 
an test a point for membershipof P(u; bv) using O(mn) arithmeti
 operations. Therefore we 
an use the al-gorithm of Kannan, Lov�asz and Simonovits [16℄ to approximate vol(P(u; bv))(or vol(P(r0; 
0)), in Case 1) within (1� �=5) (with probability at least 1� �0)using O�(n6=�2) arithmeti
 operations.The number of arithmeti
 operations used to approximate j�r�s;(
k+1;:::;
n)jis dominated by the number of arithmeti
 operations of the volume estima-tion algorithm. Also, we 
an assume that all the arithmeti
 operations are
arried out on numbers of size O�(Nmn), and therefore we 
an assume thatea
h arithmeti
 operation takes O�(n2) time. Therefore the time to estimatej�r�s;(
k+1;:::;
n)j, for any s 2 S isO�(n8=�2)By (6), we will estimate j�r�s;(
k+1;:::;
n)j for O(n6m2=�2m2) di�erent s 2 S. Thetotal running time to estimate all these values isO�  n6m2+8�2m2+2 !2.3 Step 3Finally, in Step 3, we use (1) of Observation 1 to 
onstru
t an estimate Sr;
 ofj�r;
j, using the exa
t values of j�s;(
1;:::;
k)j for s 2 S (
onstru
ted in Step 1),and the estimates of j�r�s;(
k+1;:::;
n)j for s 2 S (
onstru
ted in Step 2).By de�nition of �0 = �=jSj, we know that with probability at least (1� �), allof the estimates 
onstru
ted in Step 2 lie within (1 � �) of their true values.11



Therefore jj�r;
j � Sr;
j � �j�r;
jwith probability at least (1� �).Combining the running times of Step 1 and Step 2, the running time of ourentire algorithm isO�  n12m2�4m2 ! :3 Approximating j�u;vj by the volume of a 
onvex bodyIn this se
tion we prove the 
laim that the number of 
ontingen
y tables withgiven row and 
olumn sums 
an be 
losely approximated by the volume ofa 
onvex polytope, if the row and 
olumn sums are large enough. We beginby introdu
ing some notation. Let u = (u1; : : : ; um0) be a list of row sumsand v = (v1; : : : ; vn0) be a list of 
olumn sums. Let N 0 be the table sum. Then�u;v is equivalent to the set of non-negative integer solutions for the followingsystem of inequalities (see, for example, Dyer, Kannan and Mount [11℄):n0�1Xj=1 Xi;j� ui for 1 � i � m0 � 1 (10)m0�1Xi=1 Xi;j� vj for 1 � j � n0 � 1 (11)m0�1Xi=1 n0�1Xj=1 Xi;j�N 0 � um0 � vn0 (12)In this setting we assume:Xi;n0 = ui �Pn0�1j=1 Xi;j for i � m0 � 1;Xm0;j = vj �Pm0�1i=1 Xi;j for j � n0 � 1, andXn0;m0 = Pm0�1i=1 Pn0�1j=1 Xi;j � (N 0 � vn0 � um0):In this se
tion and the next one, we work in the (m0 � 1)(n0 � 1)-dimensionalspa
e and assume that i ranges over 1 � i � m0 � 1 and j ranges over1 � j � n0 � 1.We de�ne P(u; v) as the 
onvex polytope 
onsisting of the set of non-negativereal solutions for (10), (11) and (12).12



For any 
onvex body P and any � > 0, we de�ne the dilation of P by � tobe the set �P = f�X : X 2 Pg. It is well-known that for any d-dimensional
onvex body P, vol(�P) = �dvol(P) (see Corollary 15, page 101 of Kelley andSrinivasan [18℄).Theorem 3 Let n be an integer and p and q be de�ned as in Se
tion 2.Let u = (u1; : : : ; um0) be a list of row sums su
h that ui � nq for every i,and v = (v1; : : : ; vn0) be a list of 
olumn sums su
h that vj � np=2 for every j(by 
onstru
tion m0 � m and n0 � n). Then(1� �15)vol(P(u; v)) � j�u;vj � (1 + �15)vol(P(u; v)):Proof: We assume without loss of generality that um0 is the largest row sumamong the ui, and that vn0 is the largest 
olumn sum among the vj. Thereforeum0 � N 0=m0 and vn0 � N 0=n0.The following interpretation of j�u;vj will be useful: for ea
h Z 2 �u;v, wede�ne a hyper
ube H(Z) su
h that X 2 H(Z) i� 0 � Xi;j � Zi;j < 1 forall 1 � i � m0�1 and 1 � j � n0�1. Then every point in P(u; v) is asso
iatedwith at most one integer point Z 2 �u;v. Also, for every Z 2 �u;v, the volumeof the hyper
ube asso
iated with Z, denoted vol(H(Z)), is exa
tly 1 (thoughsome of the hyper
ube H(Z) may lie outside P(u; v)).In part (i) of this proof we will de�ne two extra 
onvex polytopes 
alledP�(u; v) and P+(u; v). We will show thatP�(u; v) � [Z2�u;vH(Z) and [Z2�u;v H(Z) � P+(u; v):As vol([Z2�u;vH(Z)) = j�u;vj, this showsvol(P�(u; v)) � j�u;vj � vol(P+(u; v)): (13)In Part (ii) we will show that(1� �15)vol(P(u; v)) � vol(P�(u; v))and vol(P+(u; v)) � (1 + �15)vol(P(u; v)):Putting this together with (13), we will have(1� �15)vol(P(u; v)) � j�u;vj � (1 + �15)vol(P(u; v))as required. 13



(i): Let P�(u; v) be the set of all real (m0 � 1)(n0 � 1)-dimensional points Xwith non-negative entries that satisfy the following three sets of inequalities:n0�1Xj=1 Xi;j� ui for 1 � i � m0 � 1 (14)m0�1Xi=1 Xi;j� vj for 1 � j � n0 � 1 (15)m0�1Xi=1 n0�1Xj=1 Xi;j�N 0 � um0 � vn0 + (m0 � 1)(n0 � 1) (16)It should be obvious that P�(u; v) � P(u; v). We will show something stronger.Let X 2 P�(u; v), and let Z be the unique point with integer entries su
h thatX 2 H(Z). We will show Z 2 P(u; v). Then sin
e Z is an integer point byde�nition, we will have Z 2 �u;v.By de�nition of H(Z) and the fa
t that the Xi;j values are non-negative, weknow Zi;j � 0 for all 1 � i � m0 � 1, 1 � j � n0 � 1.Also, be
ause Zi;j � Xi;j for all 1 � i � m0 � 1, 1 � j � n0 � 1, therefore (14)and (15) imply that Z satis�es (10) and (11) for P(u; v).Finally, m0�1Xi=1 n0�1Xj=1 Zi;j � (m0�1Xi=1 n0�1Xj=1 Xi;j)� (m0 � 1)(n0 � 1);and 
ombining this with (16), we havem0�1Xi=1 n0�1Xj=1 Zi;j � N 0 � um0 � vn0;whi
h is (12).So Z 2 �u;v. Therefore P�(u; v) � [Z2�u;vH(Z).De�ne P+(u; v) to be the set of all real (m0� 1)(n0� 1)-dimensional points Xwith non-negative entries that satisfy the following inequalities:n0�1Xj=1 Xi;j� ui + (n0 � 1) for 1 � i � m0 � 1 (17)m0�1Xi=1 Xi;j� vj + (m0 � 1) for 1 � j � n0 � 1 (18)14



m0�1Xi=1 n0�1Xj=1 Xi;j�N 0 � um0 � vn0 (19)Clearly P(u; v) � P+(u; v). Now let Z 2 �u;v. Then Z is also in P(u; v) andsatis�es (10), (11), and (12). We will show that H(Z) � P+(u; v).Let X 2 H(Z), so therefore Xi;j � Zi;j for all 1 � i � m0 � 1, 1 � j � n0 � 1.Therefore all of the entries of X are non-negative.By (12) and by Xi;j � Zi;j, we have Pm0�1i=1 Pn0�1j=1 Xi;j � N 0� um0 � vn0, whi
his (19).By de�nition of H(Z),n0�1Xj=1 Xi;j � (n0�1Xj=1 Zi;j) + (n0 � 1);and 
ombining this with (10), we obtain (17). By a similar argument, X sat-is�es (18).Therefore [Z2�u;vH(Z) � P+(u; v).Therefore we have shown thatP�(u; v)�[Z2�u;vH(Z) and[Z2�u;vH(Z)�P+(u; v);and therefore we have proved (13), as required.(ii): We de�ne Æ = �=20m0n0. Note that n�p� = �=20mn, whi
h is at most Æ.Thus np� � 1=Æ.For this se
tion of the proof, it will be useful to move the origin to a pointlying inside P(u; v). Let p0 be the real (m0 � 1)(n0 � 1)-dimensional pointde�ned by p0i;j =def uivj=N 0. We move the origin of P(u; v) to p0 as follows:substituting Y +p0 for X in (10), (11) and (12), we �nd that the pointX lies inP(u; v) i� the point Y = X�p0 satis�es Yi;j � �uivj=N 0 for all 1 � i � m0�1,1 � j � n0 � 1 and also satis�es the following system of inequalities:n0�1Xj=1 Yi;j� uivn0N 0 for 1 � i � m0 � 1 (20)m0�1Xi=1 Yi;j� um0vjN 0 for 1 � j � n0 � 1 (21)15



m0�1Xi=1 n0�1Xj=1 Yi;j��um0vn0N 0 (22)Let P0(u; v) be the set of real (m0 � 1)(n0 � 1)-dimensional points Y thatsatisfy (20)-(22) and satisfy Yi;j � �uivj=N 0 for all 1 � i � m0 � 1, 1 � j �n0 � 1. Clearly vol(P0(u; v)) = vol(P(u; v)):We now move the origin for the polytopes P�(u; v) and P+(u; v), using thesame point p0. We de�ne two more transformed 
onvex polytopes Q�(u; v) andQ+(u; v), wherevol(P�(u; v))=vol(Q�(u; v)) andvol(P+(u; v))=vol(Q+(u; v)):Q�(u; v) is the set of points Y satisfying Yi;j � �uivj=N 0 for all 1 � i � m0�1,1 � j � n0 � 1 and satisfyingn0�1Xj=1 Yi;j� uivn0N 0 for 1 � i � m0 � 1 (23)m0�1Xi=1 Yi;j� um0vjN 0 for 1 � j � n0 � 1 (24)m0�1Xi=1 n0�1Xj=1 Yi;j��um0vn0N 0 + (m0 � 1)(n0 � 1) (25)Q+(u; v) is the set of points Y satisfying Yi;j � �uivj=N 0 for all 1 � i � m0�1,1 � j � n0 � 1 and satisfyingn0�1Xj=1 Yi;j � uivn0N 0 + (n0 � 1) for 1 � i � m0 � 1 (26)m0�1Xi=1 Yi;j� um0vjN 0 + (m0 � 1) for 1 � j � n0 � 1 (27)m0�1Xi=1 n0�1Xj=1 Yi;j � �um0vn0N 0 (28)We prove (1 � Æ)P0(u; v) � Q�(u; v). Let Y 2 (1 � Æ)P0(u; v), so Y=(1 �16



Æ) 2 P0(u; v). We show that Y satis�es the lower bounds for Q�(u; v) andInequalities (23)-(25).Lower bounds: The lower bounds for P0(u; v) ensure that Yi;j � �(1�Æ)uivj=N 0for all 1 � i � m0�1, 1 � j � n0�1; therefore Yi;j � �uivj=N 0 holds trivially.Inequality (23): By (20),Pn0�1j=1 Yi;j � (1�Æ)uivn0=N 0, whi
h is less than uivn0=N 0.Inequality (24) follows by an similar argument.Inequality (25): By (22), we havem0�1Xi=1 n0�1Xj=1 Yi;j��um0vn0N 0 + Æum0vn0N 0 :By de�nition, Æum0vn0=N 0 � Ævn0=m0 � Ænp�1=2 (using n � m � m0). There-fore by de�nition of p and by np� � 1=Æ, we �ndÆum0vn0N 0 � Ænp�12 = Æn2(m�1)(p�+2)2� n4(m�1)2� (m0 � 1)(n0 � 1);where the se
ond last step follows by m � 2 and np� � 1=Æ, and the last stepfollows by m� 1 � 1 and n � m � 2. Thenm0�1Xi=1 n0�1Xj=1 Yi;j��um0vn0N 0 + (m0 � 1)(n0 � 1);whi
h is (25).Now we show Q+(u; v) � (1+Æ)P0(u; v). Let Y 2 Q+(u; v). We show that Y=(1+Æ) satis�es the lower bounds for P0(u; v) and Inequalities (20)-(22).Lower bounds: By de�nition of Q+(u; v), we know Yi;j � �uivj=N 0 for all1 � i � m0 � 1, 1 � j � n0 � 1. Then Yi;j � �(1 + Æ)uivj=N 0 holds trivially,so Y=(1 + Æ) satis�es the lower bounds for P0(u; v).Inequality (20): By (26),n0�1Xj=1 Yi;j� uivn0N 0 + (n0 � 1): 17



De�ne Æ0 = (n0 � 1)N 0=uivn0, so we haven0�1Xj=1 Yi;j� (1 + Æ0)uivn0N 0 :Then byN 0=vn0 � n0 and ui � nq, we have Æ0 � 1=nq�2. By de�nition q�2 = p�,so we have Æ0 � Æ. Therefore Y=(1 + Æ) satis�es (20).Inequality (21): By (27),m0�1Xi=1 Yi;j� um0vjN 0 + (m0 � 1):De�ne Æ00 = (m0 � 1)N 0=um0vj, and writem0�1Xi=1 Yi;j� (1 + Æ00)um0vjN 0 :ApplyingN 0=um0 � m0 and vj � np=2, and using our assumptions thatm0 � mand m � n, we have Æ00 � 2=np�2. By de�nition of p and by n�p� � Æ, we haveÆ00 � Æ, and Y=(1 + Æ) satis�es (21).Inequality (22): By (28), Pm0i=1Pn0�1j=1 Yi;j � �um0vn0=N 0. But �um0vn0=N 0 ��(1 + Æ)um0vn0=N 0, so Y=(1 + Æ) satis�es (22).Now we have (1 � Æ)P0(u; v) � Q�(u; v) and Q+(u; v) � (1 + Æ)P0(u; v), andthis givesvol((1� Æ)P0(u; v))� vol(Q�(u; v)) andvol(Q+(u; v))� vol((1 + Æ)P0(u; v)):Alsovol((1� Æ)P0(u; v))= (1� Æ)(m0�1)(n0�1)vol(P0(u; v));vol((1 + Æ)P0(u; v))= (1 + Æ)(m0�1)(n0�1)vol(P0(u; v)):But (1 � Æ)(m0�1)(n0�1) � (1 � (m0 � 1)(n0 � 1)Æ), and by the de�nition of Æ,this is at least (1� �=20). Therefore(1� �15)vol(P0(u; v))� vol(Q�(u; v)):18



Then by vol(P0(u; v)) = vol(P(u; v)) and vol(Q�(u; v)) = vol(P�(u; v)), wehave(1� �15)vol(P(u; v))� vol(P�(u; v)): (29)Also (1 + Æ)(m0�1)(n0�1) � e�=20 (using (1 + x=n)n � ex), and sin
e � < 1, thisis at most (1 + �=15). Thereforevol(Q+(u; v))� (1 + �15)vol(P0(u; v));and by vol(P0(u; v)) = vol(P(u; v)) and vol(Q+(u; v)) = vol(P+(u; v)),vol(P+(u; v))� (1 + �15)vol(P(u; v)): (30)Combining (30) and (29) with (13), we have our result. 24 Approximating the volume of a 
onvex body by another 
onvexbodyIn this se
tion we prove the se
ond 
laim made in Case 3 of Step 2 of ouralgorithm. We will use notation from Se
tions 2 and 3 and some of the ideasfrom Se
tion 3.Theorem 4 Let (u1; : : : ; um0) and (v1; : : : ; vn0) be lists of row and 
olumnsums su
h that m0 � m� 1, n0 � n, ui � nq for all i and vj � np=2 for all j.Suppose that (bv1; : : : ; bvn0) is another list of 
olumn sums satisfying bvj � np=2for all j, and also satisfying jvj � bvjj � R for all j. Thenvol(P(u; v))� (1 + �15)vol(P(u; bv)):Proof: Again, let Æ = �=20m0n0.Assume without loss of generality that vn0 is the largest 
olumn sum amongthe vj.Let p0 be the real (m0�1)(n0�1)-dimensional point de�ned by p0i;j =def uivj=N 0.We will use the same tri
k that we used in part (ii) of Theorem 3, and 
onsiderthe 
onvex polytope P0(u; v) 
entred at this point.19



Remember that vol(P0(u; v)) = vol(P(u; v)).We now 
onstru
t P0(u; bv) by taking the identi
al point p0 that we used forP0(u; v) and letting Y 2 P0(u; bv) i� Y + p0 2 P(u; bv) (remember that this
enter point p0 is de�ned in terms of the ui and vj values, rather than theui and bvj values). Then we 
onsider (1 + Æ)P0(u; bv). Then Y is an element of(1 + Æ)P0(u; bv) i� Yi;j � �(1 + Æ)uivj=N 0 for all i; j andn0�1Xj=1 Yi;j � (1 + Æ)uivn0N 0 for 1 � i � m0 � 1 (31)m0�1Xi=1 Yi;j � (1 + Æ)((bvj � vj) + um0vjN 0 ) for 1 � j � n0 � 1 (32)m0�1Xi=1 n0�1Xj=1 Yi;j � (1 + Æ)((vn0 � bvn0)� um0vn0N 0 ) (33)We will show P0(u; v) � (1+Æ)P0(u; bv). Within this proof we will show that thequantity (vn0 � bvn0)�um0vn0=N 0 (lower bound on Pm0�1i=1 Pn0�1j=1 Yi;j for P0(u; bv))is negative and that ea
h of the (bvj � vj)+ um0vj=N 0 values (upper bounds onPm0�1i=1 Yi;j for P0(u; bv)) is positive.Let Y be any element of P0(u; v), so Y satis�es (20)-(22) and Yi;j � �uivj=N 0.We prove Y 2 (1 + Æ)P0(u; bv) by 
he
king that it satis�es the four types of
onstraints for (1+ Æ)P0(u; bv): Inequalities (31)-(33), and the lower bounds onthe entries of Y .Lower bounds: We know Yi;j � �uivj=N 0 for all 1 � i � m0�1, 1 � j � n0�1.Then Yi;j � �(1 + Æ)uivj=N 0, as required.Inequality (31): By (20) we know Pn0�1j=1 Yi;j � uivn0=N 0, and by Æ > 0, thistrivially implies (31).Inequality (32): Consider the quantity (1+ Æ)(bvj � vj) + Æum0vj=N 0. We knowthat bvj � vj � �R and thatum0vj=N 0 � vj=m0 � np=2m0:Therefore (1+Æ)(bvj�vj)+Æum0vj=N 0 is at least as big as Ænp=2m0�2R. By (8)and by np� � 1=Æ,Ænp=2m0 � 2R=R(Ænp=2m0R � 2)�R(Æn(p�1)=2=2m0 � 2)=R(Æn(m�1)(p�+2)=2m0 � 2)20



�R(Ænp�n2(m�1)=2m0 � 2)�R(n2(m�1)=2m0 � 2)� 0;where the last step follows by n � m � 2 and m0 � m� 1. By (21), we knowPm0�1i=1 Yi;j is bounded above by um0vj=N 0. Therefore we havem0�1Xi=1 Yi;j� um0vjN 0 + (1 + Æ)(bvj � vj) + Æum0vjN 0=(1 + Æ)((bvj � vj) + um0vjN 0 );so (32) is satis�ed.Inequality (33): Consider (1 + Æ)(vn0 � bvn0)� Æum0vn0=N 0. Using vn0 � bvn0 � Rand um0vn0=N 0 � vn0=m0 � np=2m0, we have(1 + Æ)(vn0 � bvn0)� Æum0vn0=N 0� 2R� Ænp=2m0� 0be
ause (8) and np� � 1=Æ imply that 2R� Ænp=2m0 is negative. By (22), thedouble sum Pm0�1i=1 Pn0�1j=1 Yi;j is bounded below by �um0vn0=N 0. Thereforem0�1Xi=1 n0�1Xj=1 Yi;j��um0vn0N 0 + (1 + Æ)(vn0 � bvn0)� Æum0vn0N 0=(1 + Æ)((vn0 � bvn0)� um0vn0N 0 )so (33) is satis�ed.Then P0(u; v) � (1 + Æ)P0(u; bv) and thereforevol(P0(u; v))� (1 + Æ)(m0�1)(n0�1)vol(P0(u; bv)):By the same argument given at the end of Theorem 3, we obtainvol(P0(u; v))� (1 + �15)vol(P0(u; bv));or equivalently,vol(P(u; v))� (1 + �15)vol(P(u; bv)):21



2
5 Generating a 
ontingen
y table almost uniformly at randomAn almost-uniform sampler for 
ontingen
y tables is an algorithm that takesa list of row sums r, a list of 
olumn sums 
 and an error parameter " 2 (0; 1),and returns an element X 2 �r;
 with probability �(X), su
h thatXX2�r;
 j�(X)� j�r;
j�1j � ":The sampler is a polynomial almost-uniform sampler (paus) if it runs in timepolynomial in the number of rows and 
olumns, the table sum, and "�1. Thesampler is a fully polynomial almost-uniform sampler (fpaus) if the dependen
eon the error parameter is polynomial in (log "�1).The error term PX2�r;
 j�(X)� j�r;
j�1j is the variation distan
e between theoutput distribution of our sampler and the uniform distribution on �r;
.We now des
ribe how to 
onvert our fpras into a paus for the set of 
ontingen
ytables with row sums r and 
olumn sums 
, when the number of rows is 
on-stant. If " < 1, we show how to generate a point with probabilities within 1�"of the uniform distribution on the set of 
ontingen
y tables. We are 
urrentlyunable to improve this to an fpaus, sin
e the 
ontingen
y table problem is notself-redu
ible, as required by the methods of [15℄, nor does it apparently evensatisfy the weaker 
ondition of [8℄. This is a somewhat surprising te
hni
aldiÆ
ulty, given that it has re
ently been shown that a fpaus does in fa
t existfor this problem [2℄.Let � = "=5. We �rst perform Step 1 from Se
tion 2 and partition the 
olumnsinto small 
olumns and large 
olumns.S is the set of ordered partitions s of Pkj=1 
j into m parts su
h that si � rifor all 1 � i � m.For any 1 � h � k, Sh is the set of ordered partitions q of Phj=1 
j into mparts.The dynami
 programming algorithm 
onstru
ts j�s;(
1;:::;
k)j for all s 2 S. Italso 
onstru
ts j�q;(
1;:::;
h)j, for every q 2 Sh and 1 � h � k.Carrying out Step 2 of our original algorithm, we obtain an approximation toSr�s;(
k+1;:::;
n), for every s 2 S, leading to an approximation of Sr;
.22



Let s be any ordered partition of Pkj=1 
j into m parts su
h that si � rifor all 1 � i � m. Then Equation (1) of Observation 1 implies that if we
hoose a 
ontingen
y table X a

ording to the uniform distribution on �r;
,the probability �(s) that X has the partial row sums s is�(s) = j�s;(
1;:::;
k)j � j�r�s;(
k+1;:::;
n)jj�r;
j :De�ne b�(s) by b�(s) = j�s;(
1;:::;
k)j � Sr�s;(
k+1;:::;
n)Sr;
 :Sin
e we have an fpras, we 
an ensure that jb�(s)=�(s) � 1j � � for all s 2 S,with arbitrarily high probability. Therefore if we 
an(i) 
hoose s 2 S a

ording to the probabilities b�(s),(ii) 
hoose an element of �s;(
1;:::;
k) within 1� � of the uniform probability,(iii) 
hoose an element of �r�s;(
k+1;:::;
n) uniformly within 1� � of the uniformprobability,we will generate from a distribution � with probabilities within (1� �)3 of theuniform distribution. Therefore the probabilities of our distribution � will alllie within (1� 4�) of j�r;
j�1 (using the fa
t that � = "=5 � 1=5).Clearly (i) 
an be a

omplished, sin
e we have expli
itly 
omputed the nu-merators and denominator of all the b�(s) values.We now show that we 
an generate a sample uniformly at random from�s;(
1;:::;
k). We 
onstru
t the values for the hth 
olumn of X in de
reasingorder. Suppose we have already 
onstru
ted 
olumns h + 2; : : : ; k of the ta-ble and that s is the 
urrent partial row sum for the �rst h + 1 rows. Fromequation (3), we 
hoose q 2 Sh (0 � qi � si, i 2 [m℄) with probabilityj�q;(
1;:::;
h)j=j�s;(
1;:::;
h+1)j, and set 
olumn h to (s � q). We iterate this untilall the entries in the small 
olumns have been assigned.We now 
omplete the ` small rows. These are 
hosen independently to beany ordered partition of r0i into n0 parts (i 2 [`℄). This 
an be done as follows.Choose a sample of size (n0�1) uniformly without repla
ement from [r0i+n0�1℄,and sort to give k1 < k2 � � � < kn0�1. Let k0 = 0, kn0 = r0i+n0. Then the elementsof the partition are (kj � kj�1 � 1) (j 2 [n0℄).The departure from uniform of the points in the small rows and 
olumnswill be very small. (It arises only from the pre
ision of our random numbergeneration.) We 
an 
ertainly ensure that all probabilities are within 1� � oftheir target values.We now subtra
t the partial 
olumn totals over the small 
olumns from the23



large 
olumn totals. We now have to generate an integer point uniformly in apolytope of the form given in (10){(12). Sin
e all row and 
olumn totals aresuÆ
iently large, we 
an do this by the method given in [11℄. Hen
e we 
anobtain a sample point with probabilities within 1�� of the uniform distributionon this set.Finally, to show that the variation distan
e between the uniform distributionand our output distribution � is bounded, note that by (i), (ii) and (iii) wehave jj�r;
j�1 � �(X)j � 4�j�r;
j�1 for all X 2 �r;
. Therefore the variationdistan
e satis�esXX2�r;
 jj�r;
j�1 � �(X)j � XX2�r;
 4�j�r;
j�1 = 4� < ";as required.A
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