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Abstract

We consider the problem of counting the number of contingency tables with given
row and column sums. This problem is known to be # P-complete, even when there
are only two rows [11]. In this paper we present the first fully-polynomial randomized
approximation scheme for counting contingency tables when the number of rows is
constant. A novel feature of our algorithm is that it is a hybrid of an exact counting
technique with an approximation algorithm, giving two distinct phases. In the first,
the columns are partitioned into “small” and “large”. We show that the number of
contingency tables can be expressed as the weighted sum of a polynomial number
of new instances of the problem, where each instance consists of some new row
sums and the original large column sums. In the second phase, we show how to
approximately count contingency tables when all the column sums are large. In this
case, we show that the solution lies in approximating the volume of a single convex
body, a problem which is known to be solvable in polynomial time [7].

Key words: Contingency tables, approximate counting, randomized algorithms.

1 Introduction

Suppose we are given two vectors of positive integers, r = (ry,...,r,,) and
c=(c1,...,cp),such that 3577, r; = 577 ¢;. We say that an m xn matrix [X; ;]
of non-negative integers is a contingency table with row sums r and column

c o - : m - :
sums c if 377 4 X; j = r; for every row i and 7%, X; ; = ¢; for every column j.

We denote the set of all contingency tables by ¥, ..

* Supported by the EPSRC grant “Sharper Analysis of Randomised Algorithms: a
Computational Approach” and by the EC IST project RAND-APX.

Preprint submitted to Elsevier Science 17 January 2003



It is well-known that for any input satistying 321", r; = }°7_; ¢;, there exists
at least one contingency table with row sums r and column sums ¢ (see, for
example, Diaconis and Gangolli [5]). It is easy to construct one element of 3, .
using the “North-West corner” rule (see, for example, Hadley [12]).

In this paper we consider the problem of approxrimately counting the set of all
contingency tables with specified row and column sums. We present the first
fully polynomial randomized approzimation scheme (fpras) [17] for counting
such tables when the number of rows is constant. The definition of an fpras
has been given elsewhere but we include it here to be precise. An fpras for
contingency tables is an algorithm that takes a list of row sums r and a list
of column sums ¢ as input, together with an error parameter € € (0,1). The
algorithm must satisfy two conditions to be an fpras. Firstly, it must output an
approximate value that lies within (1 +¢€)|%, .|, with high probability. Second,
its running time must be polynomial in the size of the input and also in e .

Here we present an fpras for the case when m is constant.

Our algorithm also implies a polynomial time procedure for the closely related
problem of sampling such a table almost uniformly at random. See the surveys
of Jerrum and Sinclair [14], or Dyer and Greenhill [8], for more definitions and
background about approximate counting and sampling.

The counting problem is of considerable interest, both from the theoretical and
practical viewpoints. The thesis of Mount provides much useful information
on this problem and its relatives [20]. Dyer, Kannan and Mount [11] have
shown that the problem of counting contingency tables is # P-complete even
if there are only two rows; therefore, we do not expect to be able to exactly
count the number of contingency tables in polynomial-time, even for two-rowed
tables. The existence of an fpras for counting contingency tables has been
an open question for several years. For example, the 1997 survey by Jerrum
and Sinclair [14] listed it as an important open problem in the complexity of
approximate counting.

Practically, contingency tables play an important role in statistics, where they
are used to tabulate the results of surveys. The analysis of such tables provides
strong motivation for the problem of efficiently sampling contingency tables
with given row and column sums almost uniformly at random. Diaconis and
Efron [4] provide many details on the practical motivation for the sampling
problem.

Before presenting our algorithm, we summarize previous work on the problem
of counting contingency tables. The first polynomial-time algorithm for count-
ing contingency tables was due to Barvinok [1], who proved that the number
of contingency tables can be counted ezactly in polynomial-time, when the
number of rows and columns is constant (see also [10]).



Most other early papers on the subject addressed the sampling problem. The
paper of Diaconis and Gangolli [5] seems to be the first to describe a Markov
chain on the space of contingency tables which converges to the uniform distri-
bution. The convergence rate of this chain was subsequently analyzed by Dia-
conis and Saloff-Coste [6] for the case when the number of rows and columns
is fixed and by Hernek [13] for the case when there are two rows. The analyses
for both cases showed that the chain mixed in pseudopolynomial time (the
running time is polynomial in the table sum). Chung et al. [3] gave a Markov
chain for contingency tables that converges in pseudopolynomial time for any
row and column sums which are sufficiently large.

The first polynomial-time algorithm for approximately counting contingency
tables with unbounded dimension was the algorithm of Dyer, Kannan and
Mount [11]. They (i) gave a sampling algorithm that converges in polyno-
mial time for any input with row sums of size Q(n?*m) and column sums of
size Q(nm?); (ii) showed how to use the sampling algorithm to approximately
count the number of contingency tables for inputs satisfying the same con-
straints. This result was later refined by Morris [19], who showed that the
result also holds when the row sums are Q(n*?mlogm) and the column sums
are Q(m?*?nlogn). Dyer and Greenhill [9] gave a polynomial-time algorithm
for counting contingency tables when the table has two rows. They first de-
fined a Markov chain for sampling from the set of contingency tables with
the given row and column sums, and showed that this chain converges in
polynomial-time when the input has two rows. Then they showed how to use
their sampling algorithm to obtain an fpras for the corresponding counting
problem. The result we prove here is a generalization of Dyer and Greenhill’s
(from two rows to m rows), but we use an entirely different approach.

A novel feature of our algorithm, which is described in Section 2, is that it is
a hybrid of an exact counting algorithm and an approximation algorithm. It
can be viewed as having two phases. The input is a list containing a constant
number of row sums, a list of column sums, and an error parameter ¢ > 0. In
the first phase of the algorithm (Step 1 below) we partition the columns of
the table into “small columns” and “large columns”. Every contingency table
for the given row and column sums can be split into two smaller tables — a
table on the small columns (with some list of partial row sums), and a table
on the large columns (whose list of row sums is the original list of row sums
less the list of partial row sums). We show that the number of different lists of
partial row sums that may occur on the table of small columns is polynomial in
the number of columns and e !. By dynamic programming, we can count the
number of contingency tables on the small columns for any given list of partial
row sums in polynomial time. We then write the number of contingency tables
for the original input as the weighted sum (each weight is the count computed
for some list of partial row sums) of a polynomial number of terms, where
each term is the number of contingency tables for some list of row sums and



the large columns.

In the second phase of the algorithm (Step 2), we approximately count contin-
gency tables for each of the new instances of the problem generated in the first
phase. Consider any specific instance. We know the number of rows is constant
and all the columns are large. We partition the rows using a different method
to that used for the columns. We define a “gap factor” which is sufficiently
large. Then we partition the rows into small rows and substantially larger rows
— each of the large rows must be larger than the product of any small row and
the gap factor. Note that the number of contingency tables for our given row
and column sums can be written as the sum, over all possible partial column
sums for the small rows, of the number of contingency tables for the given row
and column sums which have these partial column sums. Our partitioning of
the rows ensures that any partial column sums will be small in comparison
to the large column sums. In Sections 3 and 4 we show that in this case the
number of contingency tables with given partial column sums does not de-
pend much on the specific partial column sums that are considered. Therefore
we can estimate the number of contingency tables by choosing a fixed list
of partial column sums, and calculating the product of the total number of
tables for the small rows (with any partial column sums) and the number of
contingency tables for our instance which have the fixed partial column sums.
The total number of tables for the small rows can be calculated using binomial
coefficients. The second quantity we need to compute is a single instance of
the problem of counting contingency tables, where all the columns are large
and all the rows are large. In Section 3 we show that, in this case, the number
of contingency tables is very close to the volume of a convex polytope. We
use the polynomial-time algorithm of Kannan, Lovédsz and Simonovits [16],
for approximating the volume of convex bodies, to estimate the volume of this
polytope.

For many combinatorial problems, the problem of approrimately counting the
number of discrete structures satisfying a given property is closely related
to the problem of sampling one discrete structure with this property almost
uniformly at random. In random sampling, we usually want to construct a
(fully) polynomial almost-uniform sampler (see, for example, Jerrum, Valiant
and Vazirani [15] , Sinclair and Jerrum [21]). It is well-known that for a spe-
cial class of problems known as self-reducible problems, the existence of a
polynomial-time algorithm for approximate counting implies the existence of
a fully polynomial almost-uniform sampler [15,21]. The contingency tables
problem is unusual because it is not known to satisfy the condition of self-
reducibility (or a more general condition discussed by Dyer and Greenhill [8]).
However, in Section 5 we will show that our fpras can be used to obtain a
polynomial almost-uniform sampler for sampling almost uniformly at random
from the space of contingency tables with given row and column sums, when
the number of rows is constant.



2 The Algorithm

Before presenting the algorithm, we introduce some notation. First, for any
lists 7 = (ry,...,ry) and ¢ = (cq, ..., ¢,) of non-negative integers, we say that
a m X n integer matrix X is a contingency table with row sums r and column
sums c iff

X;; >0 foralli,j,

Z X;;=mr; foralli,
7=1
ZXi,j =c; forally
i=1

We let X, . denote the set of all contingency tables with row sums r and
column sums c. The cardinality of this set, denoted |, .|, is the number of
contingency tables with the given row and column sums. We always assume
that 32", r; is equal to Z;’g ¢; (otherwise X, . is empty) and denote this total
(also called the table sum) by N.

Throughout this paper we will assume that m > 2 is a constant. We assume
without loss of generality that n > m.

Our algorithm takes a list r = (ry,...,7,) of row sums and a list ¢ =
(¢1,...,¢p) of column sums, an error parameter € satisfying 0 < € < 1 and a
confidence parameter 7 satisfying 0 < n < 1. The algorithm runs in time poly-
nomial in n, log N, e ' and logn ' and returns an estimate S, .. In Sections 3
and 4, we will prove that |S, . — |3, .|| < €/%, .| with probability at least 1 — 7.

The following quantities will be useful in describing the algorithm:

pe = log, (20nm/e)
p:2(m_1)(ps+2)+1
qg=(p—1)/2(m—1)

Note that ¢ is equal to p. + 2.
We will apply the following Observation (cf. page 63 of Mount [20]):

Observation 1 Let r = (ry,...,ry) and ¢ = (¢1, ..., ¢,) be two lists of posi-
tie integers satisfying 321" ri = 3204 ¢;.

Let 1 < k <n. Let S be the set of ordered partitions s of Z?:l c; into m parts
that satisfy s; < r; for all 1 <1 < m. Then



‘Em‘ = Z ‘ES,(CI,---yck” X |2r75,(0k+1,---,cn)‘ (1)

SES

Let 1 < ¢ < m. Let T be the set of ordered partitions t of Zle r; into n parts
that satisfy t; < ¢; for all 1 < j <mn. Then

‘Zr,c‘ - Z |Z(T‘1,...,T‘[),t X |Z(rg+1,...,rm),c7t‘ (2)

teT

The following observation will also be useful

Observation 2 Let m > 2 be an integer, and let M be another positive inte-
ger. Then the number of ordered partitions of M into m parts is

M+m-—1
m— 1

> S 2Mmf]

Our algorithm is based on Observation 1.

In Step 1 of the algorithm, we choose an appropriate value for £ and calculate
125 (c1,.0r) | exactly for all s € S.

In Step 2 we approximate |¥, g ., ..,
high probability, for every s € S.

ey Within (1% €) of its true value with

In Step 3 we apply Equation (1) to estimate X, . within (1 £ ¢) with high
probability.

2.1 Step 1

Assume that (cq,...,¢,) is sorted in non-decreasing order. Let k be the index
such that ¢; < n? for all j <k and ¢; > n? forall j >k + 1.

Columns ¢y, ..., ¢, are the “small columns” of the table.
Columns ¢j1,...,c, are the “large columns”.

In this step of our algorithm, we will use dynamic programming to calculate
|Xs,(c1,...cp)| fOr every partition s € S. In fact, our algorithm will consider each
column index A (1 < h < k) in increasing order, and compute |3 ., . .,)| for
every ordered partition s of Z?‘Zl c¢; into m parts.

We will let S}, represent the set of ordered partitions of Z?Zl ¢; into m parts,
for 1 < h <k.



If h =1, then |¥, )| = 1 for every partition s of ¢; into m parts. Note that
because ¢; < n?, then by Observation 2, the number of ordered partitions we
will consider is at most 2(n?)™.

If2 < h <k, then we apply Equation (1) of Observation 1. Let s € Sj. For us,
the values of the parameters n, k and r of Equation (1) are n = h,k =h —1
and 7 = s. Then by Equation (1) we have

‘257(817"'78}1)‘ = Z ‘El],(()],...,()h,l)| X ‘257Q7Ch|
qESh_1
= Z |Eq,((31,...,(3h,1)|1 (3)
q€Sh-1,

qi<s; for all ¢

since ¥y 4., = 1if s; —¢; > 0 for all 1 < i < m (the single “table” is given
by X;, = s; — ¢; for all i) and ¥,_,., = 0 otherwise. Therefore we use the
1Xq.(c1,.en_y)| values (constructed in the previous phase of our algorithm) to
obtain |ZS,(01,~~~7817,)"

Note that because ¢; < n? for all j <, therefore

h
> ¢j < hn? < nPtl (4)
j=1

for any 1 < h < k. By Observation 2 and by Inequality (4), the number
of ordered partitions of ¥, ¢; into m parts is at most 2(n?*!)™. Therefore
|Sy| < 2n?™P*+D) | which is polynomial in n and €.

Therefore for any particular A < k, we perform O(n™®*1)) operations to
compute |X, (., |; therefore using O(n*™#*1) arithmetic operations, we
compute a table containing |Es,(cl,...,ch)‘ for every ordered partition s of Z?Zl c;
into m parts. Since k& < n, this means that we compute the table of \ES,(CI,___,C,C)|
using O(n?™P+D+1) arithmetic operations.

By definition, p+1 =2(m — 1)(p. + 2) + 2 = 2(m — 1)p. + 4m — 2. Therefore

Pl — <20”m>2(m1) pim=2,

€

Therefore Step 1 uses

n12m2
0 (_m) @



arithmetic operations to compute the set of all |¥ ., . .| values for s € S.

k

We know that none of the integers we compute is greater than N™™ therefore
each addition or comparison performed during Step 1 can be carried out in

O(nlog N) time.

We also know |S| < 2(n?*1)™ and therefore |S| is

n6m2
0 (_m) | (6)
2.2 Step 2

In this step we show how to approximate the value of |¥,_, (¢, ....c,)| Within a
multiplicative factor of (1 + €) of its true value in polynomial time, with high
probability, for any given s € S.

First let n” = n/|S|, where n is the original failure probability given as input to
the algorithm. By (6) this implies 7’ = ne>™ /n®™"d, where d is the constant
inside the O in (6).

Sort the rows of r — s into non-decreasing order and rename this vector by 7.
Let n' denote n — k, and rename the (cgi1,...,c,) vector by (¢}, ..., c).
We will estimate |3,/ |.

Let N = Z;’-‘; c; be the table sum on the large columns.

Now classify the rows of r" as “small rows” or “large rows” as follows: If 7} > n?,
then we classify all the rows as large rows. Otherwise 1} < n9. Then let ¢ be
the smallest index such that rj,; > nfj (if such an ¢ exists). The rows 1 to ¢
are the “small rows” and the rows greater than ¢ are the “large rows”.

o ¥4 I
Define R = > ;_, r;.
We consider three cases.

Case 1: All the rows are large rows (r; > n?). In this case, the row sums r’
and the column sums ¢ satisfy the conditions of Theorem 3 (see Section 3).
Therefore, by Theorem 3, the value of |X,/ | is within (1£¢/15) of the volume
of the convex polytope P(r',¢') defined in Section 3. We use the polynomial-
time algorithm of Kannan, Lovdsz and Simonovits [16] for approximating the
volume of a convex body, to approximate vol(P (7, ¢')) within a factor of (1 £



€/5), with probability at least 1 —7'. Thus we approximate |,/ | within (1+t€)
with probability at least 1 — 7)'.

Case 2: All the rows are small rows. We show this case cannot occur. Suppose
this is a possibility. Since all the rows are small rows, the table sum N is equal
to R. This table sum is bounded above by mn?". By definition of ¢,

p—1
mnqm =mn 2(m—1) m
ESH(141/(m—1))

=mn
<mnP! because m > 2
<nP because m < n

Therefore if all the rows were small rows, the table sum on the large columns
would be at most nP. However, since all the large columns were assumed
to have ¢; > n?, N < nP implies that there are no large columns. This is
a contradiction (if there are no large columns, then |3, .| would have been
computed exactly by Step 1, and Step 2 would not be carried out).

Case 3: There are small rows and large rows. The quantity R plays a central
role in the analysis for this case. Before proceeding, note that R < Zle n,
which is at most (m — 1)n9™=1) (since ¢ < m, we have at least one large row).
Substituting for ¢ and then for p,

R <(m—1)n® V2= (m — 1)pm-Dp+2) -

Now we show how to approximate |¥,/ .| for this case. By Equation (2) of
Observation 1, we write

‘Zr’,c’| - Z ‘Z(rq ,...,r}),t| X ‘Z(rh_l,...,r;n),c’ft‘ (9)

t

where the sum is taken over all partitions ¢ of the value R into a list of n’ non-
negative integers.

From here on we will denote the large row sums (g, ,,...,7,,) by (u1,..., Um),
and any list of modified large column sums ¢’ —t by (vy, ..., v, ). By construc-
tion, every u; is at least n?. To obtain a lower bound for the v; values, remember
that by construction ¢; > n? for every 1 < j < n'. Also we know ¢; < R for
every 1 < j < n'. Therefore every v; value is at least as big as n? — R, and

by (8), this is at least n?/2.



In Section 3, we will define a convex polytope P(u,v) in (m' — 1)(n' — 1)-
dimensional space for any large row sums u and modified large column sums v.
Let vol(P(u,v)) denote the the volume of the convex polytope P(u, v). We will
prove the following theorems:

Theorem 3 For any list u of large row sums and any list v of modified large
column sums, |%, ,| lies within (1 £ ¢/15) of vol(P(u, v)) (See Section 3).

Theorem 4 Let u be a list of large row sums and let v and ¥ be two lists of
modified large column sums. Then vol(P(u,v)) < (1 4 ¢/15)vol(P(u, v)) (See
Section 4).

Now we show that Theorems 3 and 4 allow us to approximate all of the
different |2, ,| values (there could be exponentially many of these) in a single
step. Define some fixed list of modified column sums v by choosing an arbitrary
partition ¢ of R, and defining © as ¢ — ¢. Let v be any other list of modified
column sums. By Theorem 3 we have

‘Zu,v

< (14 ¢€¢/15)vol(P(u,v))
< (1 +€/15)*vol(P(u, 7))
< (14 ¢€/5)vol(P(u,v))
where the second line follows by Theorem 4. Also by Theorems 3 and 4 we
have

Xyl > (1 —¢€/15)vol(P(u,v))
> (1 €/15)vol(P(u,0))/(1 + €/15)
> (1 = ¢/5)vol(P(u,0)).

By (9), the product of vol(P(u,?)) and 3, [¥, )| approximates |¥,/ .|
within (1 £ €/5).

We calculate 35, [X, — ¢ directly as follows: Since we are qummlng over all
possible column sums ¢, we are simply counting the number of /xn’ tables with

the row sums (7, .., 7"2) (and any column sums). This is equal to the product
of the terms (TI;L,":;l) over all i such that 1 < i < ¢ (the term for i counts

the number of ways of partitioning r; into an ordered list of n’ non-negative
integers).

We use the algorithm of Kannan, Lovédsz and Simonovits [16] to approximate
vol(P(u,v)) within a factor of (14¢/5) with probability at least 1 —n'. Taking
the product of this value and 3=, [ . el i |, | within
a factor of (1 £ €), with probability at least 1 n.

10



To bound the running time for Step 2 of the algorithm, we use the O* notation,
where we ignore logarithmic factors as well as constant factors.

The algorithm of Kannan, Lovasz and Simonovits [16] approximates the vol-
ume of a convex body P in d dimensions to within (1+e€) of its true value with
high probability by sampling O*(d®/¢*) random d-dimensional points and for
each of these points, performing an oracle call to test whether the point lies
in the convex body. The total number of random bits used to generate all the
points that are tested is O*(d®/€?).

The convex polytopes that we construct (either in Case 1 or Case 3) have
dimension less than or equal to nm. Also, for the convex polytopes P(u, )
that we consider (defined in Section 3), we can test a point for membership
of P(u,v) using O(mn) arithmetic operations. Therefore we can use the al-
gorithm of Kannan, Lovdsz and Simonovits [16] to approximate vol(P(u,v))
(or vol(P(r',¢')), in Case 1) within (1 +¢/5) (with probability at least 1 — ')
using O*(n®/e?) arithmetic operations.

The number of arithmetic operations used to approximate \Erfs,(ckg,__,cnﬂ
is dominated by the number of arithmetic operations of the volume estima-
tion algorithm. Also, we can assume that all the arithmetic operations are
carried out on numbers of size O*(N™"), and therefore we can assume that
each arithmetic operation takes O*(n?) time. Therefore the time to estimate
P )|, for any s € S'is

Ck41s5-2»
O*(n/¢)

By (6), we will estimate |3, (¢, ,,..c.)| for O(n®* /e2™) different s € S. The
total running time to estimate all these values is

6m2+8
(7

0 (62m2+2>
2.3 Step 3

Finally, in Step 3, we use (1) of Observation 1 to construct an estimate S, . of
|2,.¢|, using the exact values of |X, ., .| for s € S (constructed in Step 1),
and the estimates of |X, c)| for s € S (constructed in Step 2).

Chd1seees

By definition of " = n/|S|, we know that with probability at least (1 —n), all
of the estimates constructed in Step 2 lie within (1 £ €) of their true values.

11



Therefore
Hzr,c‘ o Sr,c‘ S 6|Er,c‘

with probability at least (1 — 7).

Combining the running times of Step 1 and Step 2, the running time of our
entire algorithm is

12m?
n
*
o ().

3 Approximating |X,,| by the volume of a convex body

In this section we prove the claim that the number of contingency tables with
given row and column sums can be closely approximated by the volume of
a convex polytope, if the row and column sums are large enough. We begin
by introducing some notation. Let u = (uy,...,u,s) be a list of row sums
and v = (vq,...,v,) be a list of column sums. Let N’ be the table sum. Then
Yuw 1s equivalent to the set of non-negative integer solutions for the following
system of inequalities (see, for example, Dyer, Kannan and Mount [11]):

Z X <u, forl<i<m' -1 (10)
Jj=1
m' —1
> Xij<v; for1<j<n' —1 (11)
i=1
m' —1n'—1
Z th Z N’ — Upmy — Uyt (12)
i=1 j=1

In this setting we assume:

Xi,n’ = Uu; — Z?I:?] X“] for ¢ S m' — 1/
X j =0 — ;’Llei,j for 5 <n'—1, and

1 1
Xt = 200 _77‘1:1 Xij— (N" = vpr — ).
In this section and the next one, we work in the (m' —1)(n' — 1)-dimensional
space and assume that i ranges over 1 < i < m’' — 1 and j ranges over

1<ji<n —1.

We define P(u, v) as the convex polytope consisting of the set of non-negative
real solutions for (10), (11) and (12).

12



For any convex body P and any a > 0, we define the dilation of P by «a to
be the set aP = {aX : X € P}. It is well-known that for any d-dimensional
convex body P, vol(aP) = atvol(P) (see Corollary 15, page 101 of Kelley and
Srinivasan [18]).

Theorem 3 Let n be an integer and p and q be defined as in Section 2.
Let u = (uy,...,up) be a list of row sums such that u; > n9 for every i,
and v = (vy,...,vy) be a list of column sums such that v; > nP/2 for every j
(by construction m' < m and n' < n). Then

(1- 1—65)V01(P(u,v)) < |Sul < (1+ %)VOI(P(U, ).

Proof: We assume without loss of generality that wu,, is the largest row sum
among the u;, and that v, is the largest column sum among the v;. Therefore
U > N'/m’ and v,y > N'/n/'.

The following interpretation of |X,,| will be useful: for each Z € %, ,, we
define a hypercube H(Z) such that X € H(Z) if 0 < X,; — Z;; < 1 for
alll <i<m'-1land1 < j <n'—1. Then every point in P(u, v) is associated
with at most one integer point Z € ¥, ,. Also, for every Z € %, ,, the volume
of the hypercube associated with Z, denoted vol(H (7)), is exactly 1 (though
some of the hypercube H(Z) may lie outside P(u,v)).

In part (i) of this proof we will define two extra convex polytopes called
P~ (u,v) and P*(u,v). We will show that

Pi(U‘?U) g UZGZu,UH(Z) and Uzezu,v H(Z) g P+(U‘JU)

As vol(Ugey, ,H(Z)) = |Eu|, this shows
vol(P™ (u,v)) < |S,0] < vol(PT(u,v)). (13)

In Part (ii) we will show that

(1- %)VOI(P(U, v)) < vol(P~ (u, v))

and

vol(P* (u,v)) < (1 + %)VOI(P(U,, v)).

Putting this together with (13), we will have
€

< (14 —)vol(P(u,v))

€
(1 - —)VOI(P(U, U)) < ‘Eu,v‘ > 15

15

as required.

13



(i): Let P~ (u,v) be the set of all real (m' — 1)(n' — 1)-dimensional points X
with non-negative entries that satisfy the following three sets of inequalities:

:\
|

Xi,j S U; for 1 S 1 S m —1 (14)

3 o
o
-

X <w; for1<j<n —1 (15)

<
Il
-

:\

>N — ttyy — v+ (m' —1)(n' — 1) (16)

5

HM

It should be obvious that P~ (u, v) C P(u,v). We will show something stronger.
Let X € P~ (u,v), and let Z be the unique point with integer entries such that
X € H(Z). We will show Z € P(u,v). Then since Z is an integer point by
definition, we will have Z € ¥, ,,.

By definition of H(Z) and the fact that the X;; values are non-negative, we
know 7Z;; > 0forall 1 <i<m/'—1,1<j<n —1.

Also, because Z;; < X, forall 1 <i<m'—1,1<j<n'—1, therefore (14)
and (15) imply that 7 satisfies (10) and (11) for P(u,v).

Finally,
m'—1n'—1 m'—1n'—
ZZZMZ(ZZ — (m' = 1)(n" = 1),
i—1 j=1 i—1 j=1

and combining this with (16), we have

m'—1n'—1

Z Z Zij > N' = tpy — vy,
i=1 =1

which is (12).
So Z € ¥,,. Therefore P~ (u,v) C Uges, ,H(Z).

Define P*(u,v) to be the set of all real (m’ —1)(n’ — 1)-dimensional points X
with non-negative entries that satisfy the following inequalities:

:\
|

X <u;+(n —1 for1<i<m' —1 17
J

Il
—

!

I
-

J

i=1

14



m'—1n'—1
Z Xi,j Z N’ — Uy — Uyt (19)
1 j=1

i=

Clearly P(u,v) C P*(u,v). Now let Z € ¥,,. Then Z is also in P(u,v) and
satisfies (10), (11), and (12). We will show that H(Z) C P*(u,v).

Let X € H(Z), so therefore X; ; > Z; ; forall1 <i<m'—1,1<j<n'—1.
Therefore all of the entries of X are non-negative.

By (12) and by X;; > Z; ;, we have 7 ' 52"V X 5 > N' — w4,y — vy, which
is (19).

By definition of H(Z),

and combining this with (10), we obtain (17). By a similar argument, X sat-
isfies (18).

Therefore Uyey, ,H(Z) C P*(u,v).

Therefore we have shown that

P~ (u,v) CUgex, ,H(Z) and
Uzes,, H(Z) CPT(u,v),

and therefore we have proved (13), as required.

(ii): We define § = €/20m'n’. Note that n~ P« = ¢/20mn, which is at most .
Thus nP< > 1/6.

For this section of the proof, it will be useful to move the origin to a point
lying inside P(u,v). Let p' be the real (m' — 1)(n' — 1)-dimensional point
defined by p;; =gef u;vj/N'. We move the origin of P(u,v) to p’ as follows:
substituting Y +p' for X in (10), (11) and (12), we find that the point X lies in
P(u,v) iff the point Y = X —p' satisfies Y; ; > —u,;v;/N' forall 1 <i <m'—1,
1 < j <n’—1 and also satisfies the following system of inequalities:

Z g“”)” for1<i<m' —1 (20)
7j=1

m 1 Uy V.

d Y, < N,-’ for1<j<n —1 (21)

15



U Ut
> D Yz (22)

Let P'(u,v) be the set of real (m' — 1)(n’ — 1)-dimensional points Y that
satisfy (20)-(22) and satisfy Y;; > —uv;/N' forall1 <i<m'—1,1<j <
n' — 1. Clearly

vol(P'(u,v)) = vol(P(u, v)).

We now move the origin for the polytopes P~ (u,v) and P*(u,v), using the

same point p’. We define two more transformed convex polytopes Q~ (u, v) and
Q" (u,v), where

vol(P™ (u,v)) =vol(Q (u,v))  and
vol(P* (u, v)) =vol(Q* (u, v)).

Q (u,v) is the set of points Y satisfying Y; ; > —uw;v,;/N' forall1 < i <m'—1,
1 <j <n'—1 and satisfying

Ui Uy ,
ZYMS# forl1<i<m' —1 (23)
Jj=1
m' —1
Upp? Vs .
ZYmg N’] for1<j<n —1 (24)
i—1
m' —1n'—1 U U s
m n ! !
SY vz I 1 - ) (25)
i=1 j=1

Q" (u,v) is the set of points Y satisfying Y; ; > —u;v,;/N' foralll <i <m'—1,
1 <j <n'—1 and satisfying

n' —1
U; Uy .

'1Yi’j§ N,-I—(n'—l) for1<i<m' -1 (26)

]:

m'—1 um/’l)j ) . ,

;Yi,j§7+(m—1) for1<j<n -1 (27)
m' —1n'—1

Um! Upt

> 2 Yz, (28)

We prove (1 — 0)P'(u,v) € Q (u,v). Let Y € (1 — 0)P'(u,v), so Y/(1 —

16



d) € P'(u,v). We show that Y satisfies the lower bounds for Q (u,v) and
Inequalities (23)-(25).

Lower bounds: The lower bounds for P’(u, v) ensure that Y; ; > —(1—8)u;v, /N’
foralll <i<m'—1,1<j<n'—1; therefore Y; ; > —u;v;/N" holds trivially.

Inequality (23): By (20), 37, LY < (1-8)ugvy /N', which is less than ugv, /N
Inequality (24) follows by an similar argument.

Inequality (25): By (22), we have

umz Un! Um! Up!
+9
N’ N’

pp

HM\

By definition, dty, v, /N' > dv, /m' > 6nP~'/2 (using n > m > m'). There-
fore by definition of p and by nP< > 1/, we find

5Umlvnl > (snpil _ 5n2(m71)(p5+2)
N’ 2 2
n4(m71)
>
- 2

> (- 1) - 1),

where the second last step follows by m > 2 and nP< > 1/§, and the last step
follows by m — 1 > 1 and n > m > 2. Then

mZ: 2_: u”]’\']v” +(m' = 1)(n' = 1),

which is (25).

Now we show Q" (u,v) C (140)P'(u,v). Let Y € Q™ (u, v). We show that Y/(1+
J) satisfies the lower bounds for P'(u,v) and Inequalities (20)-(22).

Lower bounds: By definition of Q*(u,v), we know Y;; > —u;v,;/N' for all
1<i<m' —1,1<j<n'"—1 ThenY;; > —(1+ d)u;v;/N' holds trivially,
so Y/(1 + §) satisfies the lower bounds for P'(u, v).

Inequality (20): By (26),

17



Define ¢’ = (n' — 1)N'/u;v,/, so we have

n'—1
U;Unt
Y <(1+§)—=.
> V<040

Then by N' /v, < n' and u; > n4, we have §' < 1/n? 2. By definition ¢—2 = p,,
so we have ¢’ < 0. Therefore Y/(1 + §) satisfies (20).

Inequality (21): By (27),

m'—1
U V4
> Yz',jST,] + (m' —1).

=1

Define §" = (m' — 1)N'/uyyv;, and write

m'—1
Uy U
Vi <(1+40")—2.
; 1,] — ( ) N,
Applying N’ /u,,, < m' and v; > n? /2, and using our assumptions that m' < m
and m < n, we have " < 2/n?~2 By definition of p and by n™?< < §, we have
§" <6, and Y/(1 + 6) satisfies (21).

Inequality (22): By (28), Zﬁll Z?:l] Yij > —tpyvn/N'. But —uyv, /[N >

—(1+ 0)up vy /N', so Y/ (1 + §) satisfies (22).
Now we have (1 — 0)P'(u,v) C Q (u,v) and Q* (u,v) C (1 + §)P'(u,v), and
this gives
vol((1 = §)P'(u,v)) <vol(Q™ (u,v)) and
vol(Q™ (u,v)) < vol((1 + 6)P'(u,v)).

Also

vol((1 — 6)P'(u, v)) = (1 — 8)™ =D =Dyol (P! (u, v)),
vol((1 + 8)P'(u,v)) = (14 0)™ D =Dyol (P! (u, v)).

But (1 — ¢)™ D=1 > (1 — (m' — 1)(n' — 1)), and by the definition of 4,
this is at least (1 — €/20). Therefore

(1- %)VOI(P’(U,U)) <vol(Q~ (u,v)).

18



ghen by vol(P'(u,v)) = vol(P(u,v)) and vol(Q™ (u,v)) = vol(P~ (u,v)), we

(1- %)VOI(P(U, v)) < vol(P~(u, v)). (29)
Also (14 0)m =D =1) < /20 (using (1 4+ x/n)" < €*), and since € < 1, this
is at most (1 4 €/15). Therefore

vol(Q*+ (u, v)) < (1 + %)vol(P’(u, V),

and by vol(P'(u,v)) = vol(P(u,v)) and vol(QT (u, v)) = vol(P*(u, v)),

vol(PT (u,v)) < (1+ E)VOI(P(U, v)). (30)

Combining (30) and (29) with (13), we have our result. O

4 Approximating the volume of a convex body by another convex
body

In this section we prove the second claim made in Case 3 of Step 2 of our
algorithm. We will use notation from Sections 2 and 3 and some of the ideas
from Section 3.

Theorem 4 Let (uy, ..., uy) and (vi,...,vy) be lists of row and column
sums such that m' <m —1, n' <n, u; > n? for all i and v; > nP/2 for all j.
Suppose that (vy, ..., 0, ) is another list of column sums satisfying v; > nP /2

for all j, and also satisfying |v; — v;| < R for all j. Then

vol(P(u,v)) < (1 + I—GE))VOI(P(U, )).

Proof: Again, let 6 = ¢/20m'n’.

Assume without loss of generality that v, is the largest column sum among
the Vj.

Let p' be the real (m'—1)(n'—1)-dimensional point defined by p; ; =g4e usv;/N'.

We will use the same trick that we used in part (ii) of Theorem 3, and consider
the convex polytope P’(u,v) centred at this point.
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Remember that vol(P'(u,v)) = vol(P(u, v)).

We now construct P’'(u,?) by taking the identical point p' that we used for
P'(u,v) and letting Y € P'(u,v) iff Y + p' € P(u,v) (remember that this
center point p' is defined in terms of the u; and v; values, rather than the
u; and v; values). Then we consider (1 + ¢)P'(u,?). Then Y is an element of
(1+9)P'(u,0) iff Y; ; > —(1 4 0)u,v;/N' for all 4, j and

Y Yig < (L+8) =5 forl<i<m' =1 (31)
J=1
m'—1 )
S Vi < (140)((5; — v;) + “";Vf’ﬂ) for1<j<n'—1 (32)
=1
m'—1n'—1 R Uyt Uyt

=1 j=1

We will show P'(u,v) C (146)P'(u, v). Within this proof we will show that the

quantity (v — Opr) — Uy v /N' (lower bound on 37! Z’;;l Y; ; for P'(u,))

is negative and that each of the (0; — v;) + v, /N’ values (upper bounds on
m -y, for P'(u, D)) is positive.

Let Y be any element of P'(u, v), so Y satisfies (20)-(22) and Y; ; > —u,v;/N'.
We prove Y € (1 + §)P'(u,v) by checking that it satisfies the four types of
constraints for (14 0)P’(u, v): Inequalities (31)-(33), and the lower bounds on
the entries of Y.

Lower bounds: We know Y; ; > —w;v,;/N' foralll <i<m'—-1,1<j<n'—1.
Then Y;; > —(1 + 0)u,v;/N', as required.

Inequality (31): By (20) we know Z_’;I;]IY;J < u;v, /N'; and by 6 > 0, this
trivially implies (31).

Inequality (32): Consider the quantity (1+ 0)(9; — v;) + duyv,;/N'. We know
that ¥; —v; > — R and that

Uy Vi /N' > v;/m' > nP /2m’.
Therefore (1+0)(0; —v;) +0uyv;/N' is at least as big as on?/2m' —2R. By (8)
and by nP< > 1/0,

on?/2m' — 2R = R(én”/2m'R — 2)
> R(6n®~V/2 j2m! — 2)
= R(0n(m=D@+2) 1o’ 9)
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> R(én” 2Am=1) /9m’ — 2)
> R(n*™=Y /2m’ - 2)
>0,

where the last step follows by n > m > 2 and m' < m — 1. By (21), we know
Z”;’fl Y; ; is bounded above by w,,v;/N'. Therefore we have

Um! U]

Z Yi; < um,v] + (1+6)(0; —vj)+6

UV

NI

=(1+8)((v; —v;) + ),

0 (32) is satisfied.

Inequality (33): Consider (1 + §) (v — V) — Oty v,y /N'. Using v,y — U < R
and v, /[N" > v, /m' > nP/2m’, we have

(1+8) (v — V) — O /N' <2R — 0P /2m/
<0

because (8) and nP< > 1/6 imply that 2R — dn?/2m’ is negative. By (22), the
double sum 77", -1 Z" 1 Y; ; is bounded below by —u,, v, /N'. Therefore

m/

1n'—1
> > V>
7=1

=1

Uy 7)n Um! Upt

NI

(1 + 6)(1;n/ — ’ﬁn/) — 4

U Upt

= (1 + 5)((7)71’ — 7A)n’) - N/

)

0 (33) is satisfied.

Then P'(u,v) C (1 + 0)P'(u, v) and therefore

vol(P'(u,v)) < (14 6)™ =D =Dyol(P' (u, 7).

By the same argument given at the end of Theorem 3, we obtain

vol (P (u,v)) < (1 + 1—€5)V01(P'(u, ?)),

or equivalently,
vol(P(u,v)) < (1 + 1—65)vol(P(u, ).
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5 Generating a contingency table almost uniformly at random

An almost-uniform sampler for contingency tables is an algorithm that takes
a list of row sums 7, a list of column sums ¢ and an error parameter € € (0, 1),
and returns an element X € ¥, . with probability o(X), such that

> lo(X) =[Sl <e.

Xezr,c

The sampler is a polynomial almost-uniform sampler (paus) if it runs in time
polynomial in the number of rows and columns, the table sum, and e '. The
sampler is a fully polynomial almost-uniform sampler (fpaus) if the dependence
on the error parameter is polynomial in (loge™!).

The error term Y- (X)) — |Z,.] 7" is the variation distance between the
X€eXr e r,c
output distribution of our sampler and the uniform distribution on %, ..

We now describe how to convert our fpras into a paus for the set of contingency
tables with row sums r and column sums ¢, when the number of rows is con-
stant. If ¢ < 1, we show how to generate a point with probabilities within 1+¢
of the uniform distribution on the set of contingency tables. We are currently
unable to improve this to an fpaus, since the contingency table problem is not
self-reducible, as required by the methods of [15], nor does it apparently even
satisfy the weaker condition of [8]. This is a somewhat surprising technical
difficulty, given that it has recently been shown that a fpaus does in fact exist
for this problem [2].

Let e = £/5. We first perform Step 1 from Section 2 and partition the columns
into small columns and large columns.

S is the set of ordered partitions s of Z";Zl c¢; into m parts such that s; < r;
forall 1 <i<m.

For any 1 < h < k, S} is the set of ordered partitions ¢ of Z?Zl ¢; into m
parts.

The dynamic programming algorithm constructs |ZSV(C“_.’%)\ for all s € S. It
also constructs |3y, . c,)|, for every ¢ € S, and 1 < h < k.

Carrying out Step 2 of our original algorithm, we obtain an approximation to

St s.(chp1rmen)s fOT €very s € S, leading to an approximation of S, .

22



Let s be any ordered partition of ZI;:1 c¢; into m parts such that s; < r;
for all 1 < i < m. Then Equation (1) of Observation 1 implies that if we
choose a contingency table X according to the uniform distribution on ¥, ,
the probability p(s) that X has the partial row sums s is

el [ st
p(s) = T
Define p(s) by
E§ C c X ST‘*S ¢ c
,5(5) _ | -7(417---"k)| 7(‘k+17"-74n).

Sr,c

Since we have an fpras, we can ensure that |p(s)/p(s) — 1| < e for all s € 5,
with arbitrarily high probability. Therefore if we can

(i) choose s € S according to the probabilities p(s),

(ii) choose an element of ¥, , . within 1 &+ € of the uniform probability,
(iii) choose an element of ¥, uniformly within 1+ € of the uniform

probability,

we will generate from a distribution o with probabilities within (1 +¢€)? of the
uniform distribution. Therefore the probabilities of our distribution ¢ will all
lie within (1 £ 4€) of |3, .| ' (using the fact that e = £/5 < 1/5).

+Ck)

Ck+17---7(3n)

Clearly (i) can be accomplished, since we have explicitly computed the nu-
merators and denominator of all the j(s) values.

We now show that we can generate a sample uniformly at random from
Y (c1,mer)- We construct the values for the hth column of X in decreasing
order. Suppose we have already constructed columns h + 2, ...,k of the ta-
ble and that s is the current partial row sum for the first A + 1 rows. From
equation (3), we choose ¢ € S, (0 < ¢ < s;, i € [m]) with probability
1Xasersen) [/ 1Xs,(c1rens |, and set column h to (s — ¢). We iterate this until
all the entries in the small columns have been assigned.

We now complete the ¢ small rows. These are chosen independently to be
any ordered partition of r} into n' parts (i € [¢]). This can be done as follows.
Choose a sample of size (n'—1) uniformly without replacement from [r;+n'—1],
and sort to give ky < ko--- < ky—y. Let kg = 0, k,y = ri+n'. Then the elements
of the partition are (k; — k;_1 — 1) (j € [n']).

The departure from uniform of the points in the small rows and columns
will be very small. (It arises only from the precision of our random number
generation.) We can certainly ensure that all probabilities are within 1 + € of
their target values.

We now subtract the partial column totals over the small columns from the
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large column totals. We now have to generate an integer point uniformly in a
polytope of the form given in (10) (12). Since all row and column totals are
sufficiently large, we can do this by the method given in [11]. Hence we can
obtain a sample point with probabilities within 1+£e¢ of the uniform distribution
on this set.

Finally, to show that the variation distance between the uniform distribution
and our output distribution ¢ is bounded, note that by (i), (ii) and (iii) we

have ||3, .| ' — o(X)| < 4¢|3, .| ! for all X € 3, .. Therefore the variation
distance satisfies

Yo Tt mo(X)][ < DD delS, T =4de<e,

XGZT,() XGZ’I‘,C

as required.
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