

The local structure of semi-sparse permutations

David Bevan

University of Strathclyde

Scottish Combinatorics Meeting 2019

University of Edinburgh

25th April 2019

Permutations

Permutation of length n: an ordering of $1, \ldots, n$.

Example

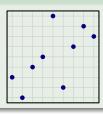
$$\pi = 314592687 \in S_9$$

The plot of a permutation: $\{(i, \pi(i)) : 1 \le i \le n\} \subset \mathbb{R}^2$.

• One point in each row; one point in each column.

• One point in each row; one point in each column

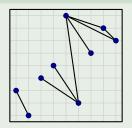
Example (314592687)



Inversions

Inversion: A pair of NW-SE points.

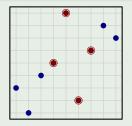
Example (314592687)



314592687 has 8 inversions.

Patterns

Example (314592687)



The consecutive pattern 2413 occurs at position 4.

Some questions

• What does a large *n*-permutation with *m* inversions look like?

Some questions

- What does a large *n*-permutation with *m* inversions look like?
- What does a *typical* large n-permutation with m(n) inversions look like, for some function m(n)?

$$m(n) = \rho n^2$$
 — dense $m(n) = n^{3/2}$ — semi-sparse $m(n) = \alpha n$ — sparse

Some questions

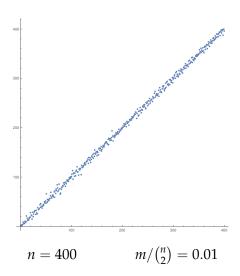
- What does a large n-permutation with m inversions look like?
- What does a *typical* large n-permutation with m(n) inversions look like, for some function m(n)?

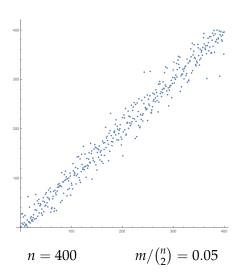
$$m(n) = \rho n^2$$
 — dense
 $m(n) = n^{3/2}$ — semi-sparse
 $m(n) = \alpha n$ — sparse

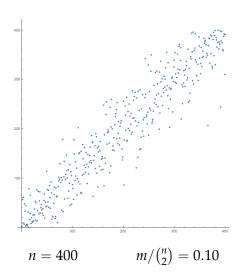
• What properties of an *n*-permutation with *m*(*n*) inversions hold asymptotically almost surely?

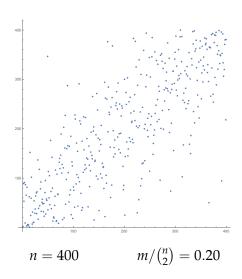
Definition

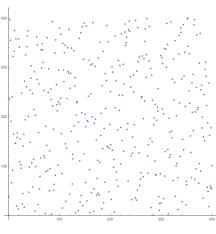
A property Q holds asymptotically almost surely (a.a.s.) if $\lim_{n\to\infty} \mathbb{P}[Q] = 1$.



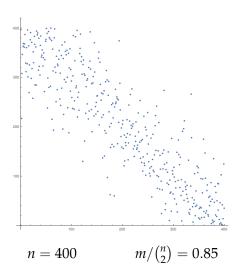






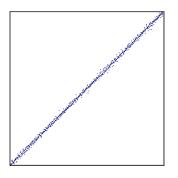


$$n = 400$$
 $m/\binom{n}{2} = 0.50$



Semi-sparse permutations

A semi-sparse permutation has "few" inversions: $n \ll m \ll n^2$.



Almost all the points are close to the main diagonal.

Definition ("y grows faster than x")

We write $x \ll y$ or $y \gg x$ if $\lim_{n \to \infty} x/y = 0$.

A semi-sparse permutation has $n \ll m \ll n^2$.

$$S_{n,m} = \{ \sigma \in S_n : \mathsf{inv}(\sigma) = m \}$$

Select σ_n uniformly from $S_{n,m}$ and i < j uniformly from [n]. Then,

$$\mathbb{P}\big[\boldsymbol{\sigma}_n(i) > \boldsymbol{\sigma}_n(j)\big] = m/\binom{n}{2} \to 0 \text{ as } n \to \infty.$$

A semi-sparse permutation has $n \ll m \ll n^2$.

$$S_{n,m} = \{ \sigma \in S_n : \mathsf{inv}(\sigma) = m \}$$

Select σ_n uniformly from $S_{n,m}$ and i < j uniformly from [n]. Then,

$$\mathbb{P}[\boldsymbol{\sigma}_n(i) > \boldsymbol{\sigma}_n(j)] = m/\binom{n}{2} \to 0 \text{ as } n \to \infty.$$

Questions

What does a semi-sparse permutation look like when we zoom in?

• $\lim_{n\to\infty} \mathbb{P}[\sigma_n(j) > \sigma_n(j+1)]$? — expected number of descents

A semi-sparse permutation has $n \ll m \ll n^2$.

$$S_{n,m} = \{ \sigma \in S_n : \mathsf{inv}(\sigma) = m \}$$

Select σ_n uniformly from $S_{n,m}$ and i < j uniformly from [n]. Then,

$$\mathbb{P}[\boldsymbol{\sigma}_n(i) > \boldsymbol{\sigma}_n(j)] = m/\binom{n}{2} \to 0 \text{ as } n \to \infty.$$

Questions

What does a semi-sparse permutation look like when we zoom in?

- $\lim_{n\to\infty} \mathbb{P}\big[\sigma_n(j) > \sigma_n(j+1)\big]$? expected number of descents
- $\lim_{n\to\infty} \mathbb{P}\big[\sigma_n(j) > \sigma_n(j+d)\big]$, for a given d? d-descents

A semi-sparse permutation has $n \ll m \ll n^2$.

$$S_{n,m} = \{ \sigma \in S_n : \mathsf{inv}(\sigma) = m \}$$

Select σ_n uniformly from $S_{n,m}$ and i < j uniformly from [n]. Then,

$$\mathbb{P}[\boldsymbol{\sigma}_n(i) > \boldsymbol{\sigma}_n(j)] = m/\binom{n}{2} \to 0 \text{ as } n \to \infty.$$

Questions

What does a semi-sparse permutation look like when we **zoom in**?

- $\lim_{n\to\infty} \mathbb{P}\big[\sigma_n(j) > \sigma_n(j+1)\big]$? expected number of descents
- $\lim_{n\to\infty} \mathbb{P}\big[\sigma_n(j) > \sigma_n(j+d)\big]$, for a given d? d-descents
- $\lim_{n\to\infty} \mathbb{P}\big[\boldsymbol{\sigma}_n(j+1)\dots\boldsymbol{\sigma}_n(j+d) \text{ is } \pi\big]$, for given $\pi\in S_d$? patterns

Theorem

Suppose $n \ll m \ll n^2/\log^2 n$. Select σ_n uniformly from $S_{n,m}$.

Theorem

Suppose $n \ll m \ll n^2/\log^2 n$. Select σ_n uniformly from $S_{n,m}$.

1. If $d = d(n) \ll m/n$, then

$$\lim_{n\to\infty} \mathbb{P}\big[\boldsymbol{\sigma}_n(j) > \boldsymbol{\sigma}_n(j+d)\big] = \frac{1}{2}.$$

Theorem

Suppose $n \ll m \ll n^2/\log^2 n$. Select σ_n uniformly from $S_{n,m}$.

1. If $d = d(n) \ll m/n$, then

$$\lim_{n\to\infty} \mathbb{P}\big[\boldsymbol{\sigma}_n(j) > \boldsymbol{\sigma}_n(j+d)\big] = \frac{1}{2}.$$

2. If $d = d(n) \ll \sqrt{m/n}$ and $\pi_n \in S_d$, then

$$\mathbb{P}[\boldsymbol{\sigma}_n(j+1)\dots\boldsymbol{\sigma}_n(j+d) \text{ is } \pi_n] \sim 1/d!.$$

Theorem (local uniformity)

Suppose $n \ll m \ll n^2/\log^2 n$. Select σ_n uniformly from $S_{n,m}$.

1. If $d = d(n) \ll m/n$, then

$$\lim_{n\to\infty} \mathbb{P}\big[\boldsymbol{\sigma}_n(j) > \boldsymbol{\sigma}_n(j+d)\big] = \frac{1}{2}.$$

2. If $d = d(n) \ll \sqrt{m/n}$ and $\pi_n \in S_d$, then

$$\mathbb{P}\big[\boldsymbol{\sigma}_n(j+1)\ldots\boldsymbol{\sigma}_n(j+d) \text{ is } \pi_n\big] \sim 1/d!.$$

Local-global dichotomy

- Expected number of descents is asymptotically (n-1)/2.
- Permutations from $S_{n,m}$ are locally uniform.
- Local structure reveals nothing about global structure.

Local structure: consecutive patterns

$$S_{n,m} = \{ \sigma \in S_n : \mathsf{inv}(\sigma) = m \}$$

Proposition (position-independence)

Within $S_{n,m}$, for any consecutive pattern π and positive $i, j \leq n + 1 - |\pi|$, $\mathbb{P}[\pi \text{ occurs at position } i] = \mathbb{P}[\pi \text{ occurs at position } j]$.

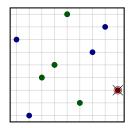
Local structure: consecutive patterns

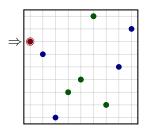
$$S_{n,m} = \{ \sigma \in S_n : \mathsf{inv}(\sigma) = m \}$$

Proposition (position-independence)

Within $S_{n,m}$, for any consecutive pattern π and positive $i, j \leq n + 1 - |\pi|$, $\mathbb{P}[\pi \text{ occurs at position } i] = \mathbb{P}[\pi \text{ occurs at position } j]$.

A pictorial proof:

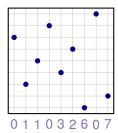




This is a bijection on $S_{n,m}$ that shifts consecutive patterns right by one.

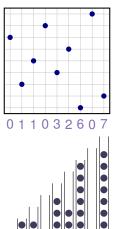
Inversion sequences

Inversion sequence of σ : (e_j) , where $e_j = \big| \{i : i < j \text{ and } \sigma(i) > \sigma(j)\} \big|$.



Inversion sequences

Inversion sequence of σ : (e_j) , where $e_j = |\{i : i < j \text{ and } \sigma(i) > \sigma(j)\}|$.



Balls-in-boxes: Nonnegative sequences $(e_j)_{j=1}^n$ with $e_j < j$ whose sum is m are in bijection with n-permutations that have m inversions.

Unrestricted balls-in-boxes

Weak compositions of m with n parts, $C_{n,m}$:

Unrestricted balls-in-boxes

Weak compositions of m with n parts, $C_{n,m}$:

Proposition

If $n \ll m \ll n^2/\log n$, then for all $\varepsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}\big[\text{every box has at most } r_{n,m} = \tfrac{m}{n}(1+\varepsilon)\log n \text{ balls}\big] = 1.$$

A.a.s., no box has more than $(1 + \varepsilon) \log n$ times its expected contents.

Unrestricted balls-in-boxes

Weak compositions of m with n parts, $C_{n,m}$:



Proposition

If $n \ll m \ll n^2/\log n$, then for all $\varepsilon > 0$,

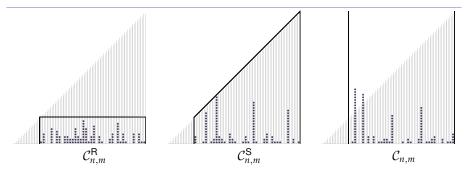
$$\lim_{n\to\infty} \mathbb{P}\big[\text{every box has at most } r_{n,m} = \tfrac{m}{n}(1+\varepsilon)\log n \text{ balls}\big] = 1.$$

A.a.s., no box has more than $(1 + \varepsilon) \log n$ times its expected contents.

Corollary

If $C_{n,m}^{\mathsf{R}}$ is the set of restricted compositions with at most $r_{n,m}$ balls per box, then $|\mathcal{C}_{n,m}^{\mathsf{R}}| \sim |\mathcal{C}_{n,m}|$ (that is, $\lim_{n \to \infty} |\mathcal{C}_{n,m}^{\mathsf{R}}| / |\mathcal{C}_{n,m}| = 1$).

Approximating inversion sequences



Since,

$$C_{n,m}^{\mathsf{R}} \subset C_{n,m}^{\mathsf{S}} \subset C_{n,m}$$

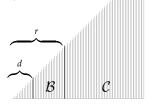
and

$$|\mathcal{C}_{n,m}^{\mathsf{R}}| \sim |\mathcal{C}_{n,m}|,$$

we also have

$$|\mathcal{C}_{n,m}^{S}| \sim |\mathcal{C}_{n,m}| = {m+n-1 \choose m}.$$

Split boxes into three ranges:



Let $B = \binom{r}{2} - \binom{d}{2}$ be the capacity of \mathcal{B} (boxes $d + 1, \dots, r$). Let b_k be the number of ways of placing k balls in \mathcal{B} .

Split boxes into three ranges:



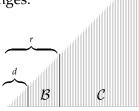
Let $B = \binom{r}{2} - \binom{d}{2}$ be the capacity of \mathcal{B} (boxes $d+1, \ldots, r$).

Let b_k be the number of ways of placing k balls in \mathcal{B} .

Number of permutations with the first *d* boxes empty (increasing):

$$\sum\nolimits_{k=0}^{B} b_k \left| \mathcal{C}_{n-r,m-k}^{S} \right| \sim \sum\nolimits_{k=0}^{B} b_k \left| \mathcal{C}_{n-r,m-k} \right|$$

Split boxes into three ranges:



Let $B = \binom{r}{2} - \binom{d}{2}$ be the capacity of \mathcal{B} (boxes $d+1, \ldots, r$).

Let b_k be the number of ways of placing k balls in \mathcal{B} .

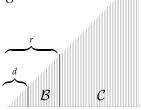
Number of permutations with the first *d* boxes empty (increasing):

$$\sum\nolimits_{k=0}^{B} b_k \big| \mathcal{C}_{n-r,m-k}^{\mathsf{S}} \big| \sim \sum\nolimits_{k=0}^{B} b_k \big| \mathcal{C}_{n-r,m-k} \big|$$

Number of permutations with the first *d* boxes full (decreasing):

$$\sum_{k=0}^{B} b_{k} |\mathcal{C}_{n-r,m-\binom{d}{2}-k}^{S}| \sim \sum_{k=0}^{B} b_{k} |\mathcal{C}_{n-r,m-\binom{d}{2}-k}|$$

Split boxes into three ranges:



If $\binom{d}{2} \ll m/n$, then

$$\mathbb{P}\big[\boldsymbol{\sigma}_n[1,d] \text{ is increasing}\big] \sim \mathbb{P}\big[\boldsymbol{\sigma}_n[1,d] \text{ is } \pi_n\big] \sim \mathbb{P}\big[\boldsymbol{\sigma}_n[1,d] \text{ is decreasing}\big]$$

So by position independence,

$$\mathbb{P}\big[\boldsymbol{\sigma}_n(j+1)\ldots\boldsymbol{\sigma}_n(j+d) \text{ is } \pi_n\big] \sim \frac{1}{d!}.$$

Further results

Theorem (critical window)

Suppose $n \ll m \ll n^2/\log^2 n$. Select σ_n uniformly from $S_{n,m}$.

If $d \sim \alpha \sqrt{m/n}$ and $\pi_n \in S_d$ with $inv(\pi_n) \sim \rho d^2/2$, then

$$\mathbb{P}\big[\boldsymbol{\sigma}_n(j+1)\ldots\boldsymbol{\sigma}_n(j+d) \text{ is } \pi_n\big] \sim e^{(1-2\rho)\alpha^2/4}\frac{1}{d!}.$$

Further questions

What about the rest of the semi-sparse range? $n^2/\log^2 n \ll m \ll n^2$ — How can we approximate?

What about dense permutations? $m \sim \alpha n^2$

— Do *permutons* help?

Thanks for listening!

