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Permutations

Permutation of length n: an ordering of 1, . . . ,n.

Example
π = 314592687 ∈ S9

The plot of a permutation:
{
(i, π(i)) : 1 6 i 6 n

}
⊂ R2.

• One point in each row; one point in each column.

Example (314592687)



Inversions

Inversion: A pair of NW–SE points.

Example (314592687)

314592687 has 8 inversions.



Patterns

Example (314592687)

The consecutive pattern 2413 occurs at position 4.



Some questions

• What does a large n-permutation with m inversions look like?

• What does a typical large n-permutation with m(n) inversions
look like, for some function m(n)?

m(n) = ρn2 — dense

m(n) = n3/2 — semi-sparse

m(n) = αn — sparse
• What properties of an n-permutation with m(n) inversions hold

asymptotically almost surely?

Definition
A property Q holds asymptotically almost surely (a.a.s.) if lim

n→∞
P
[
Q
]
= 1.
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Semi-sparse permutations

A semi-sparse permutation has “few” inversions: n� m� n2.

Almost all the points are close to the main diagonal.

Definition (“y grows faster than x”)
We write x� y or y� x if lim

n→∞
x/y = 0.



Specific questions: local structure

A semi-sparse permutation has n� m� n2.

Sn,m = {σ ∈ Sn : inv(σ) = m}

Select σn uniformly from Sn,m and i < j uniformly from [n]. Then,

P
[
σn(i) > σn(j)

]
= m/

(n
2

)
→ 0 as n→∞.

Questions
What does a semi-sparse permutation look like when we zoom in?

• lim
n→∞

P
[
σn(j) > σn(j + 1)

]
? — expected number of descents

• lim
n→∞

P
[
σn(j) > σn(j + d)

]
, for a given d? — d-descents

• lim
n→∞

P
[
σn(j + 1) . . .σn(j + d) is π

]
, for given π ∈ Sd? — patterns
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Results

Theorem

(local uniformity)

Suppose n� m� n2/ log2 n. Select σn uniformly from Sn,m.

1. If d = d(n)� m/n, then

lim
n→∞

P
[
σn(j) > σn(j + d)

]
= 1

2 .

2. If d = d(n)�
√

m/n and πn ∈ Sd, then

P
[
σn(j + 1) . . .σn(j + d) is πn

]
∼ 1/d!.

Local-global dichotomy
• Expected number of descents is asymptotically (n− 1)/2.
• Permutations from Sn,m are locally uniform.
• Local structure reveals nothing about global structure.
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Local structure: consecutive patterns

Sn,m = {σ ∈ Sn : inv(σ) = m}

Proposition (position-independence)
Within Sn,m, for any consecutive pattern π and positive i, j 6 n + 1− |π|,

P
[
π occurs at position i

]
= P

[
π occurs at position j

]
.

A pictorial proof:

⇒

This is a bijection on Sn,m that shifts consecutive patterns right by one.
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Inversion sequences

Inversion sequence of σ: (ej), where ej =
∣∣{i : i < j and σ(i) > σ(j)}

∣∣.

0 1 1 0 3 2 6 0 7

Balls-in-boxes: Nonnegative sequences (ej)
n
j=1 with ej < j whose sum is

m are in bijection with n-permutations that have m inversions.
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Unrestricted balls-in-boxes

Weak compositions of m with n parts, Cn,m:

2 4 6 3 0 3 0 0 9 0 1 2 5 5 2 0 5 6 2 2 0 1 2 0 0 3 0 0 3 3 0 2 1 8 3 0 1

Proposition
If n� m� n2/ log n, then for all ε > 0,

lim
n→∞

P
[
every box has at most rn,m = m

n (1 + ε) log n balls
]
= 1.

A.a.s., no box has more than (1 + ε) log n times its expected contents.

Corollary

If CR
n,m is the set of restricted compositions with at most rn,m balls per

box, then |CR
n,m| ∼ |Cn,m| (that is, lim

n→∞
|CR

n,m|/|Cn,m| = 1).
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Approximating inversion sequences

xxxx CR
n,m CS

n,m Cn,m

Since,
CR

n,m ⊂ CS
n,m ⊂ Cn,m

and
|CR

n,m| ∼ |Cn,m|,

we also have
|CS

n,m| ∼ |Cn,m| =
(m+n−1

m

)
.



Counting

Split boxes into three ranges:

r︷ ︸︸ ︷.............. .....................

d︷︸︸︷..... ..............................
B C

Let B =
(r

2

)
−
(d

2

)
be the capacity of B (boxes d + 1, . . . , r).

Let bk be the number of ways of placing k balls in B.

Number of permutations with the first d boxes empty (increasing):∑B

k=0
bk
∣∣CS

n−r,m−k

∣∣ ∼ ∑B

k=0
bk
∣∣Cn−r,m−k

∣∣
Number of permutations with the first d boxes full (decreasing):∑B

k=0
bk
∣∣CS

n−r,m−(d
2)−k

∣∣ ∼ ∑B

k=0
bk
∣∣Cn−r,m−(d

2)−k

∣∣
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Counting

Split boxes into three ranges:

r︷ ︸︸ ︷.............. .....................

d︷︸︸︷..... ..............................
B C

If
(d

2

)
� m/n, then

P
[
σn[1, d] is increasing

]
∼ P

[
σn[1, d] is πn

]
∼ P

[
σn[1, d] is decreasing

]
So by position independence,

P
[
σn(j + 1) . . .σn(j + d) is πn

]
∼ 1

d!
.



Further results

Theorem (critical window)

Suppose n� m� n2/ log2 n. Select σn uniformly from Sn,m.

If d ∼ α
√

m/n and πn ∈ Sd with inv(πn) ∼ ρd2/2, then

P
[
σn(j + 1) . . .σn(j + d) is πn

]
∼ e(1−2ρ)α2/4 1

d!
.



Further questions

What about the rest of the semi-sparse range? n2/ log2 n� m� n2

— How can we approximate?

What about dense permutations? m ∼ αn2

— Do permutons help?



Thanks for listening!


