The local structure of semi-sparse permutations

David Bevan
University of Strathclyde

Scottish Combinatorics Meeting 2019
University of Edinburgh
$25^{\text {th }}$ April 2019

Permutations

Permutation of length n : an ordering of $1, \ldots, n$.
Example

$$
\pi=314592687 \in S_{9}
$$

The plot of a permutation: $\{(i, \pi(i)): 1 \leqslant i \leqslant n\} \subset \mathbb{R}^{2}$.

- One point in each row; one point in each column.

Example (314592687)

Inversions

Inversion: A pair of NW-SE points.

Example (314592687)

314592687 has 8 inversions.

Patterns

Example (314592687)

The consecutive pattern 2413 occurs at position 4.

Some questions

- What does a large n-permutation with m inversions look like?

Some questions

- What does a large n-permutation with m inversions look like?
- What does a typical large n-permutation with $m(n)$ inversions look like, for some function $m(n)$?

$$
\begin{array}{ll}
m(n)=\rho n^{2} & - \text { dense } \\
m(n)=n^{3 / 2} & - \text { semi-sparse } \\
m(n)=\alpha n & - \text { sparse }
\end{array}
$$

Some questions

- What does a large n-permutation with m inversions look like?
- What does a typical large n-permutation with $m(n)$ inversions look like, for some function $m(n)$?

$$
\begin{array}{ll}
m(n)=\rho n^{2} & - \text { dense } \\
m(n)=n^{3 / 2} & - \text { semi-sparse } \\
m(n)=\alpha n & - \text { sparse }
\end{array}
$$

- What properties of an n-permutation with $m(n)$ inversions hold asymptotically almost surely?

Definition

A property Q holds asymptotically almost surely (a.a.s.) if $\lim _{n \rightarrow \infty} \mathbb{P}[Q]=1$.

Evolution

Evolution

Evolution

Evolution

Evolution

$$
\begin{aligned}
& n=400 \\
& m /\binom{n}{2}=0.50
\end{aligned}
$$

Evolution

Semi-sparse permutations

A semi-sparse permutation has "few" inversions: $n \ll m \ll n^{2}$.

Almost all the points are close to the main diagonal.
Definition (" y grows faster than x ")
We write $x \ll y$ or $y \gg x$ if $\lim _{n \rightarrow \infty} x / y=0$.

Specific questions: local structure

A semi-sparse permutation has $n \ll m \ll n^{2}$.

$$
S_{n, m}=\left\{\sigma \in S_{n}: \operatorname{inv}(\sigma)=m\right\}
$$

Select σ_{n} uniformly from $S_{n, m}$ and $i<j$ uniformly from $[n]$. Then,

$$
\mathbb{P}\left[\boldsymbol{\sigma}_{n}(i)>\boldsymbol{\sigma}_{n}(j)\right]=m /\binom{n}{2} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Specific questions: local structure

A semi-sparse permutation has $n \ll m \ll n^{2}$.

$$
S_{n, m}=\left\{\sigma \in S_{n}: \operatorname{inv}(\sigma)=m\right\}
$$

Select σ_{n} uniformly from $S_{n, m}$ and $i<j$ uniformly from $[n]$. Then,

$$
\mathbb{P}\left[\boldsymbol{\sigma}_{n}(i)>\boldsymbol{\sigma}_{n}(j)\right]=m /\binom{n}{2} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Questions

What does a semi-sparse permutation look like when we zoom in?

- $\lim _{n \rightarrow \infty} \mathbb{P}\left[\boldsymbol{\sigma}_{n}(j)>\boldsymbol{\sigma}_{n}(j+1)\right]$?
- expected number of descents

Specific questions: local structure

A semi-sparse permutation has $n \ll m \ll n^{2}$.

$$
S_{n, m}=\left\{\sigma \in S_{n}: \operatorname{inv}(\sigma)=m\right\}
$$

Select σ_{n} uniformly from $S_{n, m}$ and $i<j$ uniformly from $[n]$. Then,

$$
\mathbb{P}\left[\boldsymbol{\sigma}_{n}(i)>\boldsymbol{\sigma}_{n}(j)\right]=m /\binom{n}{2} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Questions

What does a semi-sparse permutation look like when we zoom in?

- $\lim _{n \rightarrow \infty} \mathbb{P}\left[\boldsymbol{\sigma}_{n}(j)>\boldsymbol{\sigma}_{n}(j+1)\right]$?
- expected number of descents
- $\lim _{n \rightarrow \infty} \mathbb{P}\left[\boldsymbol{\sigma}_{n}(j)>\boldsymbol{\sigma}_{n}(j+d)\right]$, for a given d ?

Specific questions: local structure

A semi-sparse permutation has $n \ll m \ll n^{2}$.

$$
S_{n, m}=\left\{\sigma \in S_{n}: \operatorname{inv}(\sigma)=m\right\}
$$

Select σ_{n} uniformly from $S_{n, m}$ and $i<j$ uniformly from $[n]$. Then,

$$
\mathbb{P}\left[\boldsymbol{\sigma}_{n}(i)>\boldsymbol{\sigma}_{n}(j)\right]=m /\binom{n}{2} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Questions

What does a semi-sparse permutation look like when we zoom in?

- $\lim _{n \rightarrow \infty} \mathbb{P}\left[\boldsymbol{\sigma}_{n}(j)>\boldsymbol{\sigma}_{n}(j+1)\right]$? - expected number of descents
- $\lim _{n \rightarrow \infty} \mathbb{P}\left[\boldsymbol{\sigma}_{n}(j)>\boldsymbol{\sigma}_{n}(j+d)\right]$, for a given d ?
- d-descents
- $\lim _{n \rightarrow \infty} \mathbb{P}\left[\boldsymbol{\sigma}_{n}(j+1) \ldots \boldsymbol{\sigma}_{n}(j+d)\right.$ is $\left.\pi\right]$, for given $\pi \in S_{d}$? - patterns

Results

Theorem
Suppose $n \ll m \ll n^{2} / \log ^{2} n$. Select σ_{n} uniformly from $S_{n, m}$.

Results

Theorem

Suppose $n \ll m \ll n^{2} / \log ^{2} n$. Select σ_{n} uniformly from $S_{n, m}$.
1 . If $d=d(n) \ll m / n$, then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\boldsymbol{\sigma}_{n}(j)>\boldsymbol{\sigma}_{n}(j+d)\right]=\frac{1}{2}
$$

Results

Theorem

Suppose $n \ll m \ll n^{2} / \log ^{2} n$. Select σ_{n} uniformly from $S_{n, m}$.
1 . If $d=d(n) \ll m / n$, then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\boldsymbol{\sigma}_{n}(j)>\boldsymbol{\sigma}_{n}(j+d)\right]=\frac{1}{2}
$$

2. If $d=d(n) \ll \sqrt{m / n}$ and $\pi_{n} \in S_{d}$, then

$$
\mathbb{P}\left[\boldsymbol{\sigma}_{n}(j+1) \ldots \boldsymbol{\sigma}_{n}(j+d) \text { is } \pi_{n}\right] \sim 1 / d!.
$$

Results

Theorem (local uniformity)

Suppose $n \ll m \ll n^{2} / \log ^{2} n$. Select $\boldsymbol{\sigma}_{n}$ uniformly from $S_{n, m}$.
1 . If $d=d(n) \ll m / n$, then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\boldsymbol{\sigma}_{n}(j)>\boldsymbol{\sigma}_{n}(j+d)\right]=\frac{1}{2} .
$$

2. If $d=d(n) \ll \sqrt{m / n}$ and $\pi_{n} \in S_{d}$, then

$$
\mathbb{P}\left[\sigma_{n}(j+1) \ldots \sigma_{n}(j+d) \text { is } \pi_{n}\right] \sim 1 / d!.
$$

Local-global dichotomy

- Expected number of descents is asymptotically $(n-1) / 2$.
- Permutations from $S_{n, m}$ are locally uniform.
- Local structure reveals nothing about global structure.

Local structure: consecutive patterns

$$
S_{n, m}=\left\{\sigma \in S_{n}: \operatorname{inv}(\sigma)=m\right\}
$$

Proposition (position-independence)

Within $S_{n, m}$, for any consecutive pattern π and positive $i, j \leqslant n+1-|\pi|$, $\mathbb{P}[\pi$ occurs at position $i]=\mathbb{P}[\pi$ occurs at position $j]$.

Local structure: consecutive patterns

$$
S_{n, m}=\left\{\sigma \in S_{n}: \operatorname{inv}(\sigma)=m\right\}
$$

Proposition (position-independence)

Within $S_{n, m}$, for any consecutive pattern π and positive $i, j \leqslant n+1-|\pi|$, $\mathbb{P}[\pi$ occurs at position $i]=\mathbb{P}[\pi$ occurs at position $j]$.

A pictorial proof:

This is a bijection on $S_{n, m}$ that shifts consecutive patterns right by one.

Inversion sequences

Inversion sequence of σ : $\left(e_{j}\right)$, where $e_{j}=\mid\{i: i<j$ and $\sigma(i)>\sigma(j)\} \mid$.

Inversion sequences

Inversion sequence of σ : $\left(e_{j}\right)$, where $e_{j}=\mid\{i: i<j$ and $\sigma(i)>\sigma(j)\} \mid$.

011032607

Balls-in-boxes: Nonnegative sequences $\left(e_{j}\right)_{j=1}^{n}$ with $e_{j}<j$ whose sum is m are in bijection with n-permutations that have m inversions.

Unrestricted balls-in-boxes

Weak compositions of m with n parts, $\mathcal{C}_{n, m}$:

Unrestricted balls-in-boxes

Weak compositions of m with n parts, $\mathcal{C}_{n, m}$:

Proposition

If $n \ll m \ll n^{2} / \log n$, then for all $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\text { every box has at most } r_{n, m}=\frac{m}{n}(1+\varepsilon) \log n \text { balls }\right]=1 \text {. }
$$

A.a.s., no box has more than $(1+\varepsilon) \log n$ times its expected contents.

Unrestricted balls-in-boxes

Weak compositions of m with n parts, $\mathcal{C}_{n, m}$:

Proposition

If $n \ll m \ll n^{2} / \log n$, then for all $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\text { every box has at most } r_{n, m}=\frac{m}{n}(1+\varepsilon) \log n \text { balls }\right]=1 \text {. }
$$

A.a.s., no box has more than $(1+\varepsilon) \log n$ times its expected contents.

Corollary

If $\mathcal{C}_{n, m}^{\mathrm{R}}$ is the set of restricted compositions with at most $r_{n, m}$ balls per box, then $\left|\mathcal{C}_{n, m}^{\mathrm{R}}\right| \sim\left|\mathcal{C}_{n, m}\right|$ (that is, $\lim _{n \rightarrow \infty}\left|\mathcal{C}_{n, m}^{\mathrm{R}}\right| /\left|\mathcal{C}_{n, m}\right|=1$).

Approximating inversion sequences

Since,

$$
\mathcal{C}_{n, m}^{\mathrm{R}} \subset \mathcal{C}_{n, m}^{\mathrm{S}} \subset \mathcal{C}_{n, m}
$$

and

$$
\left|\mathcal{C}_{n, m}^{\mathrm{R}}\right| \sim\left|\mathcal{C}_{n, m}\right|,
$$

we also have

$$
\left|\mathcal{C}_{n, m}^{\mathrm{S}}\right| \sim\left|\mathcal{C}_{n, m}\right|=\binom{m+n-1}{m} .
$$

Counting

Split boxes into three ranges:

Let $B=\binom{r}{2}-\binom{d}{2}$ be the capacity of \mathcal{B} (boxes $d+1, \ldots, r$).
Let b_{k} be the number of ways of placing k balls in \mathcal{B}.

Counting

Split boxes into three ranges:

Let $B=\binom{r}{2}-\binom{d}{2}$ be the capacity of \mathcal{B} (boxes $d+1, \ldots, r$).
Let b_{k} be the number of ways of placing k balls in \mathcal{B}.
Number of permutations with the first d boxes empty (increasing):

$$
\sum_{k=0}^{B} b_{k}\left|\mathcal{C}_{n-r, m-k}^{\mathrm{S}}\right| \sim \sum_{k=0}^{B} b_{k}\left|\mathcal{C}_{n-r, m-k}\right|
$$

Counting

Split boxes into three ranges:

Let $B=\binom{r}{2}-\binom{d}{2}$ be the capacity of \mathcal{B} (boxes $d+1, \ldots, r$).
Let b_{k} be the number of ways of placing k balls in \mathcal{B}.
Number of permutations with the first d boxes empty (increasing):

$$
\sum_{k=0}^{B} b_{k}\left|\mathcal{C}_{n-r, m-k}^{S}\right| \sim \sum_{k=0}^{B} b_{k}\left|\mathcal{C}_{n-r, m-k}\right|
$$

Number of permutations with the first d boxes full (decreasing):

$$
\sum_{k=0}^{B} b_{k}\left|\mathcal{C}_{n-r, m-\binom{d}{2}-k}^{S}\right| \sim \sum_{k=0}^{B} b_{k}\left|\mathcal{C}_{n-r, m-\binom{d}{2}-k}\right|
$$

Counting

Split boxes into three ranges:

If $\binom{d}{2} \ll m / n$, then
$\mathbb{P}\left[\boldsymbol{\sigma}_{n}[1, d]\right.$ is increasing $] \sim \mathbb{P}\left[\boldsymbol{\sigma}_{n}[1, d]\right.$ is $\left.\pi_{n}\right] \sim \mathbb{P}\left[\boldsymbol{\sigma}_{n}[1, d]\right.$ is decreasing $]$

So by position independence,

$$
\mathbb{P}\left[\boldsymbol{\sigma}_{n}(j+1) \ldots \boldsymbol{\sigma}_{n}(j+d) \text { is } \pi_{n}\right] \sim \frac{1}{d!} .
$$

Further results

Theorem (critical window)

Suppose $n \ll m \ll n^{2} / \log ^{2} n$. Select σ_{n} uniformly from $S_{n, m}$. If $d \sim \alpha \sqrt{m / n}$ and $\pi_{n} \in S_{d}$ with $\operatorname{inv}\left(\pi_{n}\right) \sim \rho d^{2} / 2$, then

$$
\mathbb{P}\left[\boldsymbol{\sigma}_{n}(j+1) \ldots \boldsymbol{\sigma}_{n}(j+d) \text { is } \pi_{n}\right] \sim e^{(1-2 \rho) \alpha^{2} / 4} \frac{1}{d!}
$$

Further questions

What about the rest of the semi-sparse range? $\quad n^{2} / \log ^{2} n \ll m \ll n^{2}$

- How can we approximate?

What about dense permutations? $m \sim \alpha n^{2}$

- Do permutons help?

Thanks for listening!

