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Randomly perturbed graphs

The model: Gα ∪ G(n, p)

Gα = n-vertex graph with minimum degree δ(G) ≥ αn

G(n, p) = binomial random graph

The question:

For which α and which p do we a.a.s. find H = (Hn) in Gα ∪ G(n, p)?

Why?

Combining two worlds: extremal graph theory, random graphs

In Gα: often large α needed for forcing H, because of e.g. connectivity

In G(n, p): the threshold for H is often influenced by local
phenomena, e.g. enough copies of certain graphs at every vertex
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Example: Hamilton cycles

Every n-vertex graph G with δ(G) ≥ 1
2n has a Hamilton cycle. DIRAC ’52

In G(n, p) the threshold for hamiltonicity is p = log n
n . KORŠUNOV ’76, PÓSA ’76

Theorem BOHMAN, FRIEZE, MARTIN ’03

For every α > 0 there is C such that Gα ∪ G(n, C
n ) is a.a.s. hamiltonian.

δ(G) = o(n) is not possible:

In G(n, C
n ) there are linearly many isolated vertices. So G ∪ G(n, c

n )
with G = Ka,n−a is not hamiltonian if a = o(n).

p � 1
n is not possible:

Adding less than (1− 2α)n (random) edges does not suffice if
Gα = Kαn,(1−α)n.
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Theorem BOHMAN, FRIEZE, MARTIN ’03

For every α > 0 there is C such that Gα ∪ G(n, C
n ) is a.a.s. hamiltonian.

δ(G) = o(n) is not possible:

In G(n, C
n ) there are linearly many isolated vertices. So G ∪ G(n, c

n )
with G = Ka,n−a is not hamiltonian if a = o(n).

p � 1
n is not possible:

Adding less than (1− 2α)n (random) edges does not suffice if
Gα = Kαn,(1−α)n.



Example: Hamilton cycles

Every n-vertex graph G with δ(G) ≥ 1
2n has a Hamilton cycle. DIRAC ’52

In G(n, p) the threshold for hamiltonicity is p = log n
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Example: Kr factors

Every n-vertex graph G with δ(G) ≥ (1− 1
r )n has a Kr factor.

HAJNAL, SZEMERÉDI ’70

In G(n, p) the threshold for the containment of a Kr factor is

p = (log n)
1/(r

2)
n2/r . JOHANSSON, KAHN, VU ’08

Theorem BALOGH, TREGLOWN, WAGNER ’19

For every r ≥ 2 and α > 0 there is C such that Gα ∪ G(n, C
n2/r ) a.a.s. has

a Kr -factor.

Theorem J. HAN, P. MORRIS, TREGLOWN

For every 2 ≤ k ≤ r , and 1− k
r < α < 1− k−1

r , there is C such that
Gα ∪ G(n, C

n2/k ) a.a.s. has a Kr -factor.

So, if δ(G) ≥ (1− 2
r + ε)n

then adding linearly many random edges gives a Kr -factor.
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Our results (1)

Spanning bounded degree graphs:

F(n,∆) = n vertex graphs with maximum degree ≤ ∆

In G(n, p) threshold is conjectured to be
(

log1/∆ n
n

)2/(∆+1)
.

This is known for graphs from F
(
(1− ε)n,∆

)
. FERBER, LUH AND NGUYEN ’18

Theorem B, MONTGOMERY, PARCZYK, PERSON

If α > 0, ∆ 6= 4, p = ω(n−2/(∆+1)), F ∈ F(n,∆),
then Gα ∪ G(n, p) a.a.s. contains F .

So we save a log-factor in the probability p.
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Our results (2)

Powers of Hamilton cycles:

Ck
n = k -th power of a Hamilton cycle

(add edges between vertices of distance ≤ k )

Gα ∪ G(n, p) contains Ck
n for

α = (1− 1
k+1 )n, p = 0 KOMLÓS, SARKÖZY, AND SZEMEREÉDI ’98

α = 0, p � n−1/k (for k > 2) RIORDAN ’00

α > (1− 2
k+1 ), p = C

n NENADOV, TRUJIĆ

Theorem B, MONTGOMERY, PARCZYK, PERSON

For each α > 0, k ≥ 2 there is η > 0 s.t. for p ≥ n−1/k−η

Gα ∪ G(n, p) a.a.s. contains the k -th power of a Hamilton cycle Ck
n .

We save a polynomial factor in the probability p.
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Our results (3)

Universality for trees:

T (n,∆) = n vertex trees with maximum degree ≤ ∆

Gα ∪ G(n, p) contains a fixed tree from T (n,∆) for
α > 1

2 , p = 0 KOMLÓS, SARKÖZY, AND SZEMEREÉDI ’95

α = 0, p � log n
n MONTGOMERY

α > 0, p = C/n KRIVELEVICH, KWAN, SUDAKOV ’17

Theorem B, J. HAN, MONTGOMERY, KOHAYAKAWA, PARCZYK, PERSON

For each α > 0, ∆, there is C > 0 s.t. for p ≥ C/n
Gα ∪ G(n, p) is a.a.s. T (n,∆)-universal.

We have a universality version of the KKS result.
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Proof idea: Hamilton cycle powers

We want to find a copy of Ck
n in Gα ∪ G(n, p) for p ≥ n−1/k−η.

Absorbing method: Step 1

We use two-round exposure, and first find an almost spanning
subgraph F ∗ of Ck

n in G(n, p/2):

`� m� 1/η
F∗: disjoint Pk

m-, Pk
m+1-copies, leaving ≤ εn vertices uncovered,

connecting these copies with path-powers on ` vertices gives Ck
n

G(n, p) contains F∗ for p ≥ Cn−1/k−η,
choose a random F∗-copy F̂ .
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Proof idea: Hamilton cycle powers (ctd.)

Absorbing method: Step 2 (to be modified shortly)

How to connect the Pk
m-copies, reusing vertices of F̂ :

use the second round G(n, p/2) to find the connection minus a path,
use Gα to find the missing path,
look at all possible connections, find disjoint ones with Hall’s condition
for hypergraphs, AHARONI, HAXELL ’00

check hypergraph Hall-condition with Janson’s inequality,

this is even possible under more restrictions (to be specified shortly).
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Proof idea: Hamilton cycle powers (ctd.)

Absorbing method: Step 3

/ 1.5

What about the vertices of F̂ that were reused?

Switch the image of such an F∗-vertex to an unused vertex.

Choose a 2-independent set W of size n/(2∆2) in F̂ ,

pair up each unembedded vertex x of Ck
n

with an unused vertex ux of Gα ∪ G(n, p),

construct for each ux the reservoir

R(ux ) =
{

w ∈ W : NF̂ (w) ⊆ NGα(ux )
}
,

because F̂ is random we have for all vertices v ∈ V (Gα)

NGα(v) ∩ R(ux ) ≥ 10εn ,

hence Step 2 still goes through
when x ∈ V (F )− V (F ∗) is image restricted to R(ux ).
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Bounded degree subgraphs: the proof

Theorem B, MONTGOMERY, PARCZYK, PERSON

If α > 0, ∆ 6= 4, p = ω(n−2/(∆+1)), F ∈ F(n,∆),
then Gα ∪ G(n, p) a.a.s. contains F .

Same absorbing strategy.

plus strategy of Ferber, Luh, Nguyen ’18:

Riordan’s Theorem: powerful tool to embed spanning H in G(n, p),
but does “not work” if there are dense spots in H,
so vertex-decompose H into a sparse part and dense spots,
use Riordan to embed the sparse part,
use Janson and hypergraph Hall to extend to the dense spots.

They only get almost spanning.

But we use absorption with the help of Gα.

They work with a higher probability.

But we we don’t care which dense spots are used for completion
and we can use Gα.
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Universality: the proof

Theorem B, J. HAN, MONTGOMERY, KOHAYAKAWA, PARCZYK, PERSON

For each α > 0, ∆, there is C > 0 s.t. for p ≥ C/n
Gα ∪ G(n, p) is a.a.s. T (n,∆)-universal.

Same absorbing strategy.

We replace G(n, p) with an expanding graph G:

v(G) = n, ∆(G) ≤ Dpn,
∀U,W ⊆ V (G) with |U|, |W | ≥ εn we have e(U,W ) ≥ (p/D)|U||W |.

Embedding T ∈ T (n,∆) into G ∪ Gα:

randomly embed a small linear sized subtree,
since this is done randomly, we can use it to construct reservoir sets,
extend to an almost spanning subtree using a theorem of Haxell,
complete using greedy and swapping.
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Concluding remarks

so, often one saves a log-factor in p,
but not always, and sometimes even more

When? And why?

Universality? Pseudorandom graphs instead of G(n, p)?

Transition from G(n, p) to extremal?

Hypergraph analogue

matchings, cycles KRIVELEVICH, KWAN, SUDAKOV ’16, MCDOWELL, MYCROFT, J. HAN, Y. ZHAO

Other hypergraphs?

Thank you!
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