Spanning subgraphs of randomly perturbed graphs

Julia Böttcher
London School of Economics

Scottish Combinatorics Meeting, April 2019

Randomly perturbed graphs

The model: $\quad G_{\alpha} \cup G(n, p)$

- $G_{\alpha}=n$-vertex graph with minimum degree $\delta(G) \geq \alpha n$
$G(n, p)=$ binomial random graph

Randomly perturbed graphs

The model: $\quad G_{\alpha} \cup G(n, p)$

- $G_{\alpha}=n$-vertex graph with minimum degree $\delta(G) \geq \alpha n$
$\square G(n, p)=$ binomial random graph
The question:
For which α and which p do we a.a.s. find $H=\left(H_{n}\right)$ in $G_{\alpha} \cup G(n, p)$?

Randomly perturbed graphs

The model: $\quad G_{\alpha} \cup G(n, p)$

- $G_{\alpha}=n$-vertex graph with minimum degree $\delta(G) \geq \alpha n$
$\square G(n, p)=$ binomial random graph
The question:
For which α and which p do we a.a.s. find $H=\left(H_{n}\right)$ in $G_{\alpha} \cup G(n, p)$?
Why?
Combining two worlds: extremal graph theory, random graphs
- In G_{α} : often large α needed for forcing H, because of e.g. connectivity
- In $G(n, p)$: the threshold for H is often influenced by local phenomena, e.g. enough copies of certain graphs at every vertex

Example: Hamilton cycles

Every n-vertex graph G with $\delta(G) \geq \frac{1}{2} n$ has a Hamilton cycle. Dirac '52
= In $G(n, p)$ the threshold for hamiltonicity is $p=\frac{\log n}{n}$. Koräsunor '76, Poss ${ }^{\prime 77}$

Example: Hamilton cycles

- Every n-vertex graph G with $\delta(G) \geq \frac{1}{2} n$ has a Hamilton cycle. Dirac '52
= In $G(n, p)$ the threshold for hamiltonicity is $p=\frac{\log n}{n}$. Kовšunov '76, PósA' 76

For every $\alpha>0$ there is C such that $G_{\alpha} \cup G\left(n, \frac{C}{n}\right)$ is a.a.s. hamiltonian.

Example: Hamilton cycles

- Every n-vertex graph G with $\delta(G) \geq \frac{1}{2} n$ has a Hamilton cycle. Difac '52
$=$ In $G(n, p)$ the threshold for hamiltonicity is $p=\frac{\log n}{n}$. Kовธ̌unov '76, PósA '76

For every $\alpha>0$ there is C such that $G_{\alpha} \cup G\left(n, \frac{C}{n}\right)$ is a.a.s. hamiltonian.

- $\delta(G)=o(n)$ is not possible:

In $G\left(n, \frac{C}{n}\right)$ there are linearly many isolated vertices. So $G \cup G\left(n, \frac{c}{n}\right)$ with $G=K_{a, n-a}$ is not hamiltonian if $a=o(n)$.

Example: Hamilton cycles

- Every n-vertex graph G with $\delta(G) \geq \frac{1}{2} n$ has a Hamilton cycle. Difac '52
- In $G(n, p)$ the threshold for hamiltonicity is $p=\frac{\log n}{n}$. Kовšunov '76, PósA '76

For every $\alpha>0$ there is C such that $G_{\alpha} \cup G\left(n, \frac{C}{n}\right)$ is a.a.s. hamiltonian.

- $\delta(G)=o(n)$ is not possible:

In $G\left(n, \frac{C}{n}\right)$ there are linearly many isolated vertices. So $G \cup G\left(n, \frac{c}{n}\right)$ with $G=K_{a, n-a}$ is not hamiltonian if $a=o(n)$.

- $p \ll \frac{1}{n}$ is not possible:

Adding less than $(1-2 \alpha) n$ (random) edges does not suffice if $G_{\alpha}=K_{\alpha n,(1-\alpha) n}$.

Example: K_{r} factors

- Every n-vertex graph G with $\delta(G) \geq\left(1-\frac{1}{r}\right) n$ has a K_{r} factor.

Hajnal, Szemerédi '70

- In $G(n, p)$ the threshold for the containment of a K_{r} factor is
$p=\frac{(\log n)^{1 /\binom{r}{2}}}{n^{2 / r}}$.

Example: K_{r} factors

- Every n-vertex graph G with $\delta(G) \geq\left(1-\frac{1}{r}\right) n$ has a K_{r} factor.

Hajnal, Szemerédi '70

- In $G(n, p)$ the threshold for the containment of a K_{r} factor is
$p=\frac{(\log n)^{1 /\binom{r}{2}}}{n^{2 / r}}$.

Theorem

For every $r \geq 2$ and $\alpha>0$ there is C such that $G_{\alpha} \cup G\left(n, \frac{C}{n^{2 / r}}\right)$ a.a.s. has a K_{r}-factor.

Example: K_{r} factors

- Every n-vertex graph G with $\delta(G) \geq\left(1-\frac{1}{r}\right) n$ has a K_{r} factor.

Hajnal, Szemerédi '70

- In $G(n, p)$ the threshold for the containment of a K_{r} factor is

$$
p=\frac{(\log n)^{1 /\binom{r}{2}}}{n^{2} / r} .
$$

Theorem

For every $r \geq 2$ and $\alpha>0$ there is C such that $G_{\alpha} \cup G\left(n, \frac{C}{n^{2 / r}}\right)$ a.a.s. has a K_{r}-factor.

Theorem

For every $2 \leq k \leq r$, and $1-\frac{k}{r}<\alpha<1-\frac{k-1}{r}$, there is C such that $G_{\alpha} \cup G\left(n, \frac{C}{n^{2 / k}}\right)$ a.a.s. has a K_{r}-factor.

Example: K_{r} factors

- Every n-vertex graph G with $\delta(G) \geq\left(1-\frac{1}{r}\right) n$ has a K_{r} factor.

Hajnal, Szemerédi '70

- In $G(n, p)$ the threshold for the containment of a K_{r} factor is

$$
p=\frac{(\log n)^{1 /\left(\begin{array}{l}
2
\end{array}\right)}}{n^{2 / r}} .
$$

Theorem

For every $r \geq 2$ and $\alpha>0$ there is C such that $G_{\alpha} \cup G\left(n, \frac{C}{n^{2 / r}}\right)$ a.a.s. has a K_{r}-factor.

Theorem
For every $2 \leq k \leq r$, and $1-\frac{k}{r}<\alpha<1-\frac{k-1}{r}$, there is C such that $G_{\alpha} \cup G\left(n, \frac{C}{n^{2 / k}}\right)$ a.a.s. has a K_{r}-factor.

- So, if $\delta(G) \geq\left(1-\frac{2}{r}+\varepsilon\right) n$ then adding linearly many random edges gives a K_{r}-factor.

Our results (1)

Spanning bounded degree graphs:
$\mathcal{F}(n, \Delta)=n$ vertex graphs with maximum degree $\leq \Delta$

Our results (1)

Spanning bounded degree graphs:
$\mathcal{F}(n, \Delta)=n$ vertex graphs with maximum degree $\leq \Delta$

- In $G(n, p)$ threshold is conjectured to be $\left(\frac{\log ^{1 / \Delta} n}{n}\right)^{2 /(\Delta+1)}$.
- This is known for graphs from $\mathcal{F}((1-\varepsilon) n, \Delta)$. Ferber, Luh and Nguyen' 18

Our results (1)

Spanning bounded degree graphs:
$\mathcal{F}(n, \Delta)=n$ vertex graphs with maximum degree $\leq \Delta$

- In $G(n, p)$ threshold is conjectured to be $\left(\frac{\log ^{1 / \Delta} n}{n}\right)^{2 /(\Delta+1)}$.
- This is known for graphs from $\mathcal{F}((1-\varepsilon) n, \Delta)$. Ferber, LuH ano Nouven'18

Theorem

If $\alpha>0, \Delta \neq 4, p=\omega\left(n^{-2 /(\Delta+1)}\right), F \in \mathcal{F}(n, \Delta)$, then $G_{\alpha} \cup G(n, p)$ a.a.s. contains F.

Our results (1)

Spanning bounded degree graphs:
$\mathcal{F}(n, \Delta)=n$ vertex graphs with maximum degree $\leq \Delta$

- In $G(n, p)$ threshold is conjectured to be $\left(\frac{\log ^{1 / \Delta} n}{n}\right)^{2 /(\Delta+1)}$.
- This is known for graphs from $\mathcal{F}((1-\varepsilon) n, \Delta)$. Ferber, Luh and Nguyen' 18

Theorem

If $\alpha>0, \Delta \neq 4, p=\omega\left(n^{-2 /(\Delta+1)}\right), F \in \mathcal{F}(n, \Delta)$, then $G_{\alpha} \cup G(n, p)$ a.a.s. contains F.

- So we save a log-factor in the probability p.

Our results (2)

Powers of Hamilton cycles:
$C_{n}^{k}=k$-th power of a Hamilton cycle
(add edges between vertices of distance $\leq k$)

Our results (2)

Powers of Hamilton cycles:
$C_{n}^{k}=k$-th power of a Hamilton cycle
(add edges between vertices of distance $\leq k$)

- $G_{\alpha} \cup G(n, p)$ contains C_{n}^{k} for
- $\alpha=\left(1-\frac{1}{k+1}\right) n, \quad p=0$
$\square \alpha=0, \quad p \gg n^{-1 / k}($ for $k>2)$

Our results (2)

Powers of Hamilton cycles:
$C_{n}^{k}=k$-th power of a Hamilton cycle
(add edges between vertices of distance $\leq k$)

- $G_{\alpha} \cup G(n, p)$ contains C_{n}^{k} for
- $\alpha=\left(1-\frac{1}{k+1}\right) n, \quad p=0$
$\square \alpha=0, \quad p \gg n^{-1 / k}($ for $k>2)$
- $\alpha>\left(1-\frac{2}{k+1}\right), \quad p=\frac{C}{n}$

Our results (2)

Powers of Hamilton cycles:
$C_{n}^{k}=k$-th power of a Hamilton cycle
(add edges between vertices of distance $\leq k$)

- $G_{\alpha} \cup G(n, p)$ contains C_{n}^{k} for
- $\alpha=\left(1-\frac{1}{k+1}\right) n, \quad p=0$
$\square \alpha=0, \quad p \gg n^{-1 / k}($ for $k>2)$
- $\alpha>\left(1-\frac{2}{k+1}\right), \quad p=\frac{c}{n}$

Theorem

For each $\alpha>0, k \geq 2$ there is $\eta>0$ s.t. for $p \geq n^{-1 / k-\eta}$
$G_{\alpha} \cup G(n, p)$ a.a.s. contains the k-th power of a Hamilton cycle C_{n}^{k}.

Our results (2)

Powers of Hamilton cycles:
$C_{n}^{k}=k$-th power of a Hamilton cycle
(add edges between vertices of distance $\leq k$)

- $G_{\alpha} \cup G(n, p)$ contains C_{n}^{k} for
- $\alpha=\left(1-\frac{1}{k+1}\right) n, \quad p=0$
- $\alpha=0, \quad p \gg n^{-1 / k}($ for $k>2)$
- $\alpha>\left(1-\frac{2}{k+1}\right), \quad p=\frac{c}{n}$

Theorem

For each $\alpha>0, k \geq 2$ there is $\eta>0$ s.t. for $p \geq n^{-1 / k-\eta}$ $G_{\alpha} \cup G(n, p)$ a.a.s. contains the k-th power of a Hamilton cycle C_{n}^{k}.

- We save a polynomial factor in the probability p.

Our results (3)

Universality for trees:
$\mathcal{T}(n, \Delta)=n$ vertex trees with maximum degree $\leq \Delta$

Our results (3)

Universality for trees:
$\mathcal{T}(n, \Delta)=n$ vertex trees with maximum degree $\leq \Delta$

- $G_{\alpha} \cup G(n, p)$ contains a fixed tree from $\mathcal{T}(n, \Delta)$ for
- $\alpha>\frac{1}{2}, \quad p=0$

Komlós, SARKÖzY, AND SzemereÉdi '95

- $\alpha=0, \quad p \gg \frac{\log n}{n}$

MONTGOMERY

- $\alpha>0, \quad p=C / n$

Our results (3)

Universality for trees:
$\mathcal{T}(n, \Delta)=n$ vertex trees with maximum degree $\leq \Delta$

- $G_{\alpha} \cup G(n, p)$ contains a fixed tree from $\mathcal{T}(n, \Delta)$ for
- $\alpha>\frac{1}{2}, \quad p=0$

Komlós, Sarközy, and Szemereédi '95
$-\alpha=0, \quad p \gg \frac{\log n}{n}$

- $\alpha>0, \quad p=C / n$

For each $\alpha>0, \Delta$, there is $C>0$ s.t. for $p \geq C / n$
$G_{\alpha} \cup G(n, p)$ is a.a.s. $\mathcal{T}(n, \Delta)$-universal.

Our results (3)

Universality for trees:
$\mathcal{T}(n, \Delta)=n$ vertex trees with maximum degree $\leq \Delta$

- $G_{\alpha} \cup G(n, p)$ contains a fixed tree from $\mathcal{T}(n, \Delta)$ for
- $\alpha>\frac{1}{2}, \quad p=0$

Komlós, Sarközy, and Szemereédi '95
$-\alpha=0, \quad p \gg \frac{\log n}{n}$

- $\alpha>0, \quad p=C / n$

For each $\alpha>0, \Delta$, there is $C>0$ s.t. for $p \geq C / n$
$G_{\alpha} \cup G(n, p)$ is a.a.s. $\mathcal{T}(n, \Delta)$-universal.

- We have a universality version of the KKS result.

Proof idea: Hamilton cycle powers

We want to find a copy of C_{n}^{k} in $G_{\alpha} \cup G(n, p)$ for $p \geq n^{-1 / k-\eta}$.
Absorbing method: Step 1

Proof idea: Hamilton cycle powers

We want to find a copy of C_{n}^{k} in $G_{\alpha} \cup G(n, p)$ for $p \geq n^{-1 / k-\eta}$.
Absorbing method: Step 1

- We use two-round exposure, and first find an almost spanning subgraph F^{*} of C_{n}^{k} in $G(n, p / 2)$:

Proof idea: Hamilton cycle powers

We want to find a copy of C_{n}^{k} in $G_{\alpha} \cup G(n, p)$ for $p \geq n^{-1 / k-\eta}$.
Absorbing method: Step 1

- We use two-round exposure, and first find an almost spanning subgraph F^{*} of C_{n}^{k} in $G(n, p / 2)$: $\quad \ell \ll m \ll 1 / \eta$
- F^{*} : disjoint P_{m}^{k}-, P_{m+1}^{k}-copies, leaving $\leq \varepsilon n$ vertices uncovered,
- connecting these copies with path-powers on ℓ vertices gives C_{n}^{k}

Proof idea: Hamilton cycle powers

We want to find a copy of C_{n}^{k} in $G_{\alpha} \cup G(n, p)$ for $p \geq n^{-1 / k-\eta}$.
Absorbing method: Step 1

- We use two-round exposure, and first find an almost spanning subgraph F^{*} of C_{n}^{k} in $G(n, p / 2)$: $\quad \ell \ll m \ll 1 / \eta$
- F^{*} : disjoint P_{m}^{k}, P_{m+1}^{k}-copies, leaving $\leq \varepsilon n$ vertices uncovered,
- connecting these copies with path-powers on ℓ vertices gives C_{n}^{k}
- $G(n, p)$ contains F^{*} for $p \geq \mathrm{Cn}^{-1 / k-\eta}$,
- choose a random F^{*}-copy \hat{F}.

Proof idea: Hamilton cycle powers (ctd.)

Absorbing method: Step 2 (to be modified shortly)

Proof idea: Hamilton cycle powers (ctd.)

Absorbing method: Step 2 (to be modified shortly)

- How to connect the P_{m}^{k}-copies, reusing vertices of \hat{F} :

Proof idea: Hamilton cycle powers (ctd.)

Absorbing method: Step 2 (to be modified shortly)

- How to connect the P_{m}^{k}-copies, reusing vertices of \hat{F} :
- use the second round $G(n, p / 2)$ to find the connection minus a path,
- use G_{α} to find the missing path,

Proof idea: Hamilton cycle powers (ctd.)

Absorbing method: Step 2 (to be modified shortly)

- How to connect the P_{m}^{k}-copies, reusing vertices of \hat{F} :
- use the second round $G(n, p / 2)$ to find the connection minus a path,
- use G_{α} to find the missing path,
- look at all possible connections, find disjoint ones with Hall's condition for hypergraphs,
- check hypergraph Hall-condition with Janson's inequality,

Proof idea: Hamilton cycle powers (ctd.)

Absorbing method: Step 2 (to be modified shortly)

- How to connect the P_{m}^{k}-copies, reusing vertices of \hat{F} :
- use the second round $G(n, p / 2)$ to find the connection minus a path,
- use G_{α} to find the missing path,
- look at all possible connections, find disjoint ones with Hall's condition for hypergraphs,
- check hypergraph Hall-condition with Janson's inequality,
this is even possible under more restrictions (to be specified shortly).

Proof idea: Hamilton cycle powers (ctd.)

Absorbing method: Step 3
What about the vertices of \hat{F} that were reused?

Proof idea: Hamilton cycle powers (ctd.)

Absorbing method: Step 3

- What about the vertices of \hat{F} that were reused?
- Switch the image of such an F^{*}-vertex to an unused vertex.

Proof idea: Hamilton cycle powers (ctd.)

Absorbing method: Step 3 / 1.5

- What about the vertices of \hat{F} that were reused?
- Switch the image of such an F^{*}-vertex to an unused vertex.
- Choose a 2 -independent set W of size $n /\left(2 \Delta^{2}\right)$ in \hat{F},

Proof idea: Hamilton cycle powers (ctd.)

Absorbing method: Step 3 / 1.5

- What about the vertices of \hat{F} that were reused?
- Switch the image of such an F^{*}-vertex to an unused vertex.
- Choose a 2 -independent set W of size $n /\left(2 \Delta^{2}\right)$ in \hat{F},
- pair up each unembedded vertex x of C_{n}^{k}
with an unused vertex u_{x} of $G_{\alpha} \cup G(n, p)$,

Proof idea: Hamilton cycle powers (ctd.)

Absorbing method: Step 3 / 1.5

- What about the vertices of \hat{F} that were reused?
- Switch the image of such an F^{*}-vertex to an unused vertex.
- Choose a 2-independent set W of size $n /\left(2 \Delta^{2}\right)$ in \hat{F},
- pair up each unembedded vertex x of C_{n}^{k}

$$
\text { with an unused vertex } u_{x} \text { of } G_{\alpha} \cup G(n, p) \text {, }
$$

- construct for each u_{x} the reservoir

$$
R\left(u_{x}\right)=\left\{w \in W: N_{\hat{F}}(w) \subseteq N_{G_{\alpha}}\left(u_{x}\right)\right\}
$$

Proof idea: Hamilton cycle powers (ctd.)

Absorbing method: Step 3 / 1.5

- What about the vertices of \hat{F} that were reused?
- Switch the image of such an F^{*}-vertex to an unused vertex.
- Choose a 2 -independent set W of size $n /\left(2 \Delta^{2}\right)$ in \hat{F},
- pair up each unembedded vertex x of C_{n}^{k}

$$
\text { with an unused vertex } u_{x} \text { of } G_{\alpha} \cup G(n, p) \text {, }
$$

- construct for each u_{x} the reservoir

$$
R\left(u_{x}\right)=\left\{w \in W: N_{\hat{F}}(w) \subseteq N_{G_{\alpha}}\left(u_{x}\right)\right\}
$$

- because \hat{F} is random we have for all vertices $v \in V\left(G_{\alpha}\right)$

$$
N_{G_{\alpha}}(v) \cap R\left(u_{x}\right) \geq 10 \varepsilon n
$$

Proof idea: Hamilton cycle powers (ctd.)

Absorbing method: Step 3 / 1.5

- What about the vertices of \hat{F} that were reused?
- Switch the image of such an F^{*}-vertex to an unused vertex.
- Choose a 2 -independent set W of size $n /\left(2 \Delta^{2}\right)$ in \hat{F},
- pair up each unembedded vertex x of C_{n}^{k}

$$
\text { with an unused vertex } u_{x} \text { of } G_{\alpha} \cup G(n, p) \text {, }
$$

- construct for each u_{x} the reservoir

$$
R\left(u_{x}\right)=\left\{w \in W: N_{\hat{F}}(w) \subseteq N_{G_{\alpha}}\left(u_{x}\right)\right\},
$$

- because \hat{F} is random we have for all vertices $v \in V\left(G_{\alpha}\right)$

$$
N_{G_{\alpha}}(v) \cap R\left(u_{x}\right) \geq 10 \varepsilon n,
$$

- hence Step 2 still goes through when $x \in V(F)-V\left(F^{*}\right)$ is image restricted to $R\left(u_{x}\right)$.

Bounded degree subgraphs: the proof

Theorem

$$
\text { If } \begin{aligned}
\alpha>0, \Delta \neq 4, p=\omega\left(n^{-2 /(\Delta+1)}\right), & F \in \mathcal{F}(n, \Delta) \\
& \quad \text { then } G_{\alpha} \cup G(n, p) \text { a.a.s. contains } F .
\end{aligned}
$$

Same absorbing strategy.

Bounded degree subgraphs: the proof

Theorem

$$
\text { If } \begin{aligned}
\alpha>0, \Delta \neq 4, p=\omega\left(n^{-2 /(\Delta+1)}\right), & F \in \mathcal{F}(n, \Delta), \\
& \quad \text { then } G_{\alpha} \cup G(n, p) \text { a.a.s. contains } F .
\end{aligned}
$$

Same absorbing strategy.
plus strategy of Ferber, Luh, Nguyen '18:

- Riordan's Theorem: powerful tool to embed spanning H in $G(n, p)$,
- but does "not work" if there are dense spots in H,

Bounded degree subgraphs: the proof

Theorem

$$
\text { If } \begin{aligned}
\alpha>0, \Delta \neq 4, p=\omega\left(n^{-2 /(\Delta+1)}\right), & F \in \mathcal{F}(n, \Delta) \\
& \quad \text { then } G_{\alpha} \cup G(n, p) \text { a.a.s. contains } F .
\end{aligned}
$$

Same absorbing strategy.

- plus strategy of Ferber, Luh, Nguyen '18:
- Riordan's Theorem: powerful tool to embed spanning H in $G(n, p)$,
- but does "not work" if there are dense spots in H,
- so vertex-decompose H into a sparse part and dense spots,
- use Riordan to embed the sparse part,
- use Janson and hypergraph Hall to extend to the dense spots.

Bounded degree subgraphs: the proof

Theorem

$$
\text { If } \begin{aligned}
\alpha>0, \Delta \neq 4, p=\omega\left(n^{-2 /(\Delta+1)}\right), & F \in \mathcal{F}(n, \Delta) \\
& \quad \text { then } G_{\alpha} \cup G(n, p) \text { a.a.s. contains } F .
\end{aligned}
$$

Same absorbing strategy.

- plus strategy of Ferber, Luh, Nguyen '18:
- Riordan's Theorem: powerful tool to embed spanning H in $G(n, p)$,
- but does "not work" if there are dense spots in H,
- so vertex-decompose H into a sparse part and dense spots,
- use Riordan to embed the sparse part,
- use Janson and hypergraph Hall to extend to the dense spots.
- They only get almost spanning.
- But we use absorption with the help of G_{α}.

Bounded degree subgraphs: the proof

Theorem

$$
\text { If } \begin{aligned}
\alpha>0, \Delta \neq 4, p=\omega\left(n^{-2 /(\Delta+1)}\right), & F \in \mathcal{F}(n, \Delta) \\
& \quad \text { then } G_{\alpha} \cup G(n, p) \text { a.a.s. contains } F .
\end{aligned}
$$

Same absorbing strategy.

- plus strategy of Ferber, Luh, Nguyen '18:
- Riordan's Theorem: powerful tool to embed spanning H in $G(n, p)$,
- but does "not work" if there are dense spots in H,
- so vertex-decompose H into a sparse part and dense spots,
- use Riordan to embed the sparse part,
- use Janson and hypergraph Hall to extend to the dense spots.
- They only get almost spanning.
- But we use absorption with the help of G_{α}.
- They work with a higher probability.
- But we we don't care which dense spots are used for completion and we can use G_{α}.

Universality: the proof

Theorem
For each $\alpha>0, \Delta$, there is $C>0$ s.t. for $p \geq C / n$
$G_{\alpha} \cup G(n, p)$ is a.a.s. $\mathcal{T}(n, \Delta)$-universal.

Same absorbing strategy.

Universality: the proof

Theorem

For each $\alpha>0, \Delta$, there is $C>0$ s.t. for $p \geq C / n$
$G_{\alpha} \cup G(n, p)$ is a.a.s. $\mathcal{T}(n, \Delta)$-universal.

Same absorbing strategy.

- We replace $G(n, p)$ with an expanding graph G :
- $v(G)=n, \Delta(G) \leq D p n$,
- $\forall U, W \subseteq V(G)$ with $|U|,|W| \geq \varepsilon n$ we have $e(U, W) \geq(p / D)|U||W|$.

Universality: the proof

Theorem

For each $\alpha>0, \Delta$, there is $C>0$ s.t. for $p \geq C / n$

$$
G_{\alpha} \cup G(n, p) \text { is a.a.s. } \mathcal{T}(n, \Delta) \text {-universal. }
$$

Same absorbing strategy.

- We replace $G(n, p)$ with an expanding graph G :
- $v(G)=n, \Delta(G) \leq D p n$,
- $\forall U, W \subseteq V(G)$ with $|U|,|W| \geq \varepsilon n$ we have $e(U, W) \geq(p / D)|U \| W|$.
- Embedding $T \in \mathcal{T}(n, \Delta)$ into $G \cup G_{\alpha}$:
- randomly embed a small linear sized subtree,
- since this is done randomly, we can use it to construct reservoir sets,

Universality: the proof

Theorem

For each $\alpha>0, \Delta$, there is $C>0$ s.t. for $p \geq C / n$

$$
G_{\alpha} \cup G(n, p) \text { is a.a.s. } \mathcal{T}(n, \Delta) \text {-universal. }
$$

Same absorbing strategy.

- We replace $G(n, p)$ with an expanding graph G :
- $v(G)=n, \Delta(G) \leq D p n$,
- $\forall U, W \subseteq V(G)$ with $|U|,|W| \geq \varepsilon n$ we have $e(U, W) \geq(p / D)|U \| W|$.
- Embedding $T \in \mathcal{T}(n, \Delta)$ into $G \cup G_{\alpha}$:
- randomly embed a small linear sized subtree,
- since this is done randomly, we can use it to construct reservoir sets,
- extend to an almost spanning subtree using a theorem of Haxell,
- complete using greedy and swapping.

Concluding remarks

- so, often one saves a log-factor in p, but not always, and sometimes even more

When? And why?

Concluding remarks

- so, often one saves a log-factor in p, but not always, and sometimes even more

When? And why?

Universality? Pseudorandom graphs instead of $G(n, p)$?
Transition from $G(n, p)$ to extremal?

Concluding remarks

- so, often one saves a log-factor in p, but not always, and sometimes even more

When? And why?

Universality? Pseudorandom graphs instead of $G(n, p)$?
Transition from $G(n, p)$ to extremal?

Hypergraph analogue

- matchings, Cycles Krivelevich, Kwan, Sudakov '16, McDowell, Mycroft, J. Han, Y. Zhao

Other hypergraphs?

Concluding remarks

- so, often one saves a log-factor in p, but not always, and sometimes even more

When? And why?

Universality? Pseudorandom graphs instead of $G(n, p)$?
Transition from $G(n, p)$ to extremal?

Hypergraph analogue

- matchings, cycles Krivelevich, Kwan, Sudakov'16, McDowell, Mycroft, J. Han, Y. Zhao

Other hypergraphs?

