Resilience of random graphs with respect to Hamiltonicity.

Padraig Condon

University of Birmingham

joint work with

Alberto Espuny Díaz, António Girão, Jaehoon Kim, Daniela Kühn and Deryk Osthus

April 2019

Local resilience

Question: Given a Hamiltonian graph G, how many edges must you remove to destroy Hamiltonicity?

Local resilience

Question: Given a Hamiltonian graph G, how many edges must you remove to destroy Hamiltonicity?

-What if you can only delete a proportion of the edges at each vertex?

Local resilience

Question: Given a Hamiltonian graph G, how many edges must you remove to destroy Hamiltonicity?

-What if you can only delete a proportion of the edges at each vertex?

Definition (Local resilience)

The local resilience of a graph G with respect to some property \mathcal{P} is the maximum number r such that for any subgraph $H \subseteq G$ with $\Delta(H) < r$, the graph $G \setminus H$ satisfies \mathcal{P} .

This talk: G will be random and \mathcal{P} will be Hamiltonicity.

Dirac's theorem: resilience version

Theorem (Dirac, 1952)

If G is an n-vertex graph with $\delta(G) \ge n/2$, then G contains a Hamilton cycle.

Dirac's theorem: resilience version

Theorem (Dirac, 1952)

If G is an n-vertex graph with $\delta(G) \ge n/2$, then G contains a Hamilton cycle.

Equivalently, we can state Dirac's theorem in the language of resilience.

Theorem (Dirac)

The complete graph K_n is $\lfloor n/2 \rfloor$ -resilient with respect to Hamiltonicity.

Dirac's theorem for random graphs

Hamiltonicity in the binomial random graph $G_{n,p}$ is well studied.

Theorem (Pósa, 1976; Koršunov, 1976)

For $p \gg \log n/n$ we have that $G_{n,p}$ contains a Hamiltonian cycle asymptotically almost surely.

Note: $p \ll \log n/n \implies G_{n,p}$ will contain isolated vertices a.a.s.

Dirac's theorem for random graphs

Hamiltonicity in the binomial random graph $G_{n,p}$ is well studied.

Theorem (Pósa, 1976; Koršunov, 1976)

For $p \gg \log n/n$ we have that $G_{n,p}$ contains a Hamiltonian cycle asymptotically almost surely.

Note: $p \ll \log n/n \implies G_{n,p}$ will contain isolated vertices a.a.s.

Dirac's theorem for random graphs

Theorem (Lee and Sudakov, 2012)

For $p \gg \log n/n$, the random graph $G_{n,p}$ is a.a.s. (1/2 - o(1))np-resilient with respect to Hamiltonicity.

Dirac's theorem for random graphs

Hamiltonicity in the binomial random graph $G_{n,p}$ is well studied.

Theorem (Pósa, 1976; Koršunov, 1976)

For $p \gg \log n/n$ we have that $G_{n,p}$ contains a Hamiltonian cycle asymptotically almost surely.

Note: $p \ll \log n/n \implies G_{n,p}$ will contain isolated vertices a.a.s.

Dirac's theorem for random graphs

Theorem (Lee and Sudakov, 2012)

For $p \gg \log n/n$, the random graph $G_{n,p}$ is a.a.s. (1/2 - o(1))np-resilient with respect to Hamiltonicity.

Note that the above threshold is tight: if we could delete anymore edges we could disconnect the graph.

We generate a random regular graph via the model $G_{n,d}$ by choosing a graph uniformly at random among the set of d-regular graphs on n vertices.

We generate a random regular graph via the model $G_{n,d}$ by choosing a graph uniformly at random among the set of d-regular graphs on n vertices.

The following result follows from the work of Robinson and Wormald; Cooper, Frieze, Reed; Krivelevich, Sudakov, Vu, Wormald.

Theorem $(G_{n,d})$ is Hamiltonian

For all $3 \le d \le n-1$ we have that $G_{n,d}$ is Hamiltonian a.a.s.

We generate a random regular graph via the model $G_{n,d}$ by choosing a graph uniformly at random among the set of d-regular graphs on n vertices.

The following result follows from the work of Robinson and Wormald; Cooper, Frieze, Reed; Krivelevich, Sudakov, Vu, Wormald.

Theorem $(G_{n,d}$ is Hamiltonian)

For all $3 \le d \le n-1$ we have that $G_{n,d}$ is Hamiltonian a.a.s.

Theorem (Ben-Shimon, Krivelevich and Sudakov, 2011)

For every $\varepsilon > 0$ and d sufficiently large, a.a.s. $G_{n,d}$ is $(1-\varepsilon)d/6$ -resilient with respect to Hamiltonicity.

We generate a random regular graph via the model $G_{n,d}$ by choosing a graph uniformly at random among the set of d-regular graphs on n vertices.

The following result follows from the work of Robinson and Wormald; Cooper, Frieze, Reed; Krivelevich, Sudakov, Vu, Wormald.

Theorem $(G_{n,d})$ is Hamiltonian

For all $3 \le d \le n-1$ we have that $G_{n,d}$ is Hamiltonian a.a.s.

Theorem (Ben-Shimon, Krivelevich and Sudakov, 2011)

For every $\varepsilon > 0$ and d sufficiently large, a.a.s. $G_{n,d}$ is $(1-\varepsilon)d/6$ -resilient with respect to Hamiltonicity.

They conjectured that the true value should be closer to d/2.

Dirac's theorem for random regular graphs.

Theorem (Condon, Espuny-Díaz, Girão, Kühn and Osthus, 2019^+)

For every $\varepsilon > 0$ there exists D such that, for every d > D, the random graph $G_{n,d}$ is a.a.s. $(1/2 - \varepsilon)d$ -resilient with respect to Hamiltonicity.

Dirac's theorem for random regular graphs.

Theorem (Condon, Espuny-Díaz, Girão, Kühn and Osthus, 2019^+)

For every $\varepsilon > 0$ there exists D such that, for every d > D, the random graph $G_{n,d}$ is a.a.s. $(1/2 - \varepsilon)d$ -resilient with respect to Hamiltonicity.

Our result is best possible: firstly, the minimum degree bound cannot be improved, and secondly, the condition that d is large cannot be omitted.

Dirac's theorem for random regular graphs.

Theorem (Condon, Espuny-Díaz, Girão, Kühn and Osthus, 2019 $^+$)

For every $\varepsilon > 0$ there exists D such that, for every d > D, the random graph $G_{n,d}$ is a.a.s. $(1/2 - \varepsilon)d$ -resilient with respect to Hamiltonicity.

Our result is best possible: firstly, the minimum degree bound cannot be improved, and secondly, the condition that d is large cannot be omitted.

Theorem (Condon, Espuny-Díaz, Girão, Kühn and Osthus, 2019^+)

For any odd d > 2, the random graph $G_{n,d}$ is not a.a.s. (d-1)/2-resilient with respect to Hamiltonicity.

Theorem (Pósa, 1962)

Let G have degree sequence $d_1 \le d_2 \le ... \le d_n$ such that $d_i \ge i+1$ for all i < n/2. Then, G is Hamiltonian.

Theorem (Pósa, 1962)

Let G have degree sequence $d_1 \le d_2 \le ... \le d_n$ such that $d_i \ge i+1$ for all i < n/2. Then, G is Hamiltonian.

Theorem (Chvátal, 1972)

Let G have degree sequence $d_1 \le d_2 \le ... \le d_n$ such that, for all i < n/2, we have that $d_i \ge i+1$ or $d_{n-i} \ge n-i$. Then, G is Hamiltonian.

Theorem (Pósa, 1962)

Let G have degree sequence $d_1 \le d_2 \le ... \le d_n$ such that $d_i \ge i+1$ for all i < n/2. Then, G is Hamiltonian.

Theorem (Chvátal, 1972)

Let G have degree sequence $d_1 \le d_2 \le ... \le d_n$ such that, for all i < n/2, we have that $d_i \ge i+1$ or $d_{n-i} \ge n-i$. Then, G is Hamiltonian.

Question: Do Pósa's and Chvátal's results have corresponding analogues in $G_{n,p}$, like Dirac's result?

Theorem (Pósa, 1962)

Let G have degree sequence $d_1 \le d_2 \le ... \le d_n$ such that $d_i \ge i+1$ for all i < n/2. Then, G is Hamiltonian.

Theorem (Chvátal, 1972)

Let G have degree sequence $d_1 \le d_2 \le ... \le d_n$ such that, for all i < n/2, we have that $d_i \ge i+1$ or $d_{n-i} \ge n-i$. Then, G is Hamiltonian.

Question: Do Pósa's and Chvátal's results have corresponding

analogues in $G_{n,p}$, like Dirac's result? **Answer:** YES for Pósa, NO for Chvátal.

Beyond Dirac: $G_{n,p}$

Pósa's theorem for random graphs.

Theorem (Condon, Espuny Díaz, Kim, Kühn, Osthus, ' $18^{+})$

For every $\varepsilon > 0$, there exists C > 0 such that, for $p \ge C \log n/n$, a.a.s. every subgraph G of $G_{n,p}$ with degree sequence (d_1, \ldots, d_n) with $d_i \ge (i + \varepsilon n)p$ for all i < n/2 is Hamiltonian.

Beyond Dirac: $G_{n,p}$

Pósa's theorem for random graphs.

Theorem (Condon, Espuny Díaz, Kim, Kühn, Osthus, ' $18^{+})$

For every $\varepsilon > 0$, there exists C > 0 such that, for $p \ge C \log n/n$, a.a.s. every subgraph G of $G_{n,p}$ with degree sequence (d_1, \ldots, d_n) with $d_i \ge (i + \varepsilon n)p$ for all i < n/2 is Hamiltonian.

There exist counterexamples to Chvátal for random graphs.

Theorem (Condon, Espuny Díaz, Kim, Kühn, Osthus, '18⁺)

For $p \gg \log n/n$, a.a.s. there exist subgraphs G of $G_{n,p}$ with degree sequence (d_1, \ldots, d_n) satisfying $d_i \geq (i + \varepsilon n)p$ or $d_{n-i} \geq (n-i+\varepsilon n)p$ for all i < n/2 which are not Hamiltonian.

In fact, there exist subgraphs not containing a perfect matching.

• Consider $G = G_{n,d}$.

- Consider $G = G_{n,d}$.
- Let $H \subseteq G$ be such that $\Delta(H) \le (1/2 \varepsilon)d$ and let $G' \coloneqq G \setminus H$.

- Consider $G = G_{n,d}$.
- Let $H \subseteq G$ be such that $\Delta(H) \le (1/2 \varepsilon)d$ and let $G' := G \setminus H$.
- We use that G' has good expansion properties.

- Consider $G = G_{n,d}$.
- Let $H \subseteq G$ be such that $\Delta(H) \le (1/2 \varepsilon)d$ and let $G' := G \setminus H$.
- We use that G' has good expansion properties.

Definition (3-expander)

An *n*-vertex graph G is called a 3-expander if it is connected and, for every $S \subseteq [n]$ with $|S| \le n/400$, we have $|N_G(S)| \ge 3|S|$.

- Consider $G = G_{n,d}$.
- Let $H \subseteq G$ be such that $\Delta(H) \le (1/2 \varepsilon)d$ and let $G' := G \setminus H$.
- We use that G' has good expansion properties.

Definition (3-expander)

An *n*-vertex graph G is called a 3-expander if it is connected and, for every $S \subseteq [n]$ with $|S| \le n/400$, we have $|N_G(S)| \ge 3|S|$.

• We show there exists a 'sparse' subgraph $R \subseteq G'$ which is a 3-expander.

• We consider longest paths in *R*.

- We consider longest paths in R.
- By a theorem of Pósa a 3-expander has many of such paths, with different endpoints.

- We consider longest paths in *R*.
- By a theorem of Pósa a 3-expander has many of such paths, with different endpoints.
- \implies there is a 'large' set edges whose inclusion would make R Hamiltonian, or increase the length of a longest path.

- We consider longest paths in *R*.
- By a theorem of Pósa a 3-expander has many of such paths, with different endpoints.
- \implies there is a 'large' set edges whose inclusion would make R Hamiltonian, or increase the length of a longest path.

In fact, we consider 'booster' pairs of edges, which have the same effect.

• By passing from R to G' we argue that some of these booster pairs must exist.

- By passing from R to G' we argue that some of these booster pairs must exist.
- We add these edges to *R* to make it Hamiltonian or else to increase the length of a longest path.

- By passing from R to G' we argue that some of these booster pairs must exist.
- We add these edges to *R* to make it Hamiltonian or else to increase the length of a longest path.
- We iterate this process at most *n* times.

Open problems: $G_{n,p}$

Shifted Chvátal resilience.

Conjecture (Condon, Espuny Díaz, Kim, Kühn, Osthus, '18+)

For $p \gg \log n/n$, a.a.s. every subgraph G of $G_{n,p}$ with degree sequence (d_1, \ldots, d_n) satisfying $d_i \geq (i + \varepsilon n)p$ or $d_{n-i-\varepsilon n} \geq (n-i+\varepsilon n)p$ for all i < n/2 is Hamiltonian.

Open problems: $G_{n,p}$

Shifted Chvátal resilience.

Conjecture (Condon, Espuny Díaz, Kim, Kühn, Osthus, '18+)

For $p \gg \log n/n$, a.a.s. every subgraph G of $G_{n,p}$ with degree sequence (d_1,\ldots,d_n) satisfying $d_i \geq (i+\varepsilon n)p$ or $d_{n-i-\varepsilon n} \geq (n-i+\varepsilon n)p$ for all i < n/2 is Hamiltonian.

The conjecture holds for perfect matchings.

Theorem (Condon, Espuny Díaz, Kim, Kühn, Osthus, ' $18^{+})$

For every $\varepsilon > 0$, there exists C > 0 such that, for $p \ge C \log n/n$, a.a.s. every subgraph G of $G_{n,p}$ with degree sequence (d_1,\ldots,d_n) satisfying $d_i \ge (i+\varepsilon n)p$ or $d_{n-i-\varepsilon n} \ge (n-i+\varepsilon n)p$ for all i < n/2 contains a perfect matching.

Open problems: $G_{n,d}$

Can we obtain bounds on the resilience for small d?

Open problems: $G_{n,d}$

Can we obtain bounds on the resilience for small d?

Question

Given any fixed even d, determine whether the graph $G_{n,d}$ is a.a.s. (d/2-1)-resilient with respect to Hamiltonicity.

Open problems: $G_{n,d}$

Can we obtain bounds on the resilience for small d?

Question

Given any fixed even d, determine whether the graph $G_{n,d}$ is a.a.s. (d/2-1)-resilient with respect to Hamiltonicity.

Question

What is the likely resilience of $G_{n,4}$ with respect to Hamiltonicity? Is a graph obtained from $G_{n,4}$ by removing any matching a.a.s. Hamiltonian?