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Local resilience

Question: Given a Hamiltonian graph G , how many edges must
you remove to destroy Hamiltonicity?

-What if you can only delete a proportion of the edges at each
vertex?

Definition (Local resilience)
The local resilience of a graph G with respect to some property P
is the maximum number r such that for any subgraph H ⊆ G with
∆(H)< r , the graph G \H satisfies P.

This talk: G will be random and P will be Hamiltonicity.
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Dirac’s theorem: resilience version

Theorem (Dirac, 1952)
If G is an n-vertex graph with δ(G)≥ n/2, then G contains a
Hamilton cycle.

Equivalently, we can state Dirac’s theorem in the language of
resilience.

Theorem (Dirac)
The complete graph Kn is bn/2c-resilient with respect to
Hamiltonicity.
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Dirac’s theorem for random graphs

Hamiltonicity in the binomial random graph Gn,p is well studied.

Theorem (Pósa, 1976; Kor̆sunov, 1976)
For p� log n/n we have that Gn,p contains a Hamiltonian cycle
asymptotically almost surely.

Note: p� log n/n =⇒ Gn,p will contain isolated vertices a.a.s.

Dirac’s theorem for random graphs

Theorem (Lee and Sudakov, 2012)
For p� log n/n, the random graph Gn,p is
a.a.s. (1/2−o(1))np-resilient with respect to Hamiltonicity.

Note that the above threshold is tight: if we could delete anymore
edges we could disconnect the graph.
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Dirac’s theorem for random regular graphs

We generate a random regular graph via the model Gn,d by
choosing a graph uniformly at random among the set of d-regular
graphs on n vertices.

The following result follows from the work of Robinson and
Wormald; Cooper, Frieze, Reed; Krivelevich, Sudakov, Vu,
Wormald.

Theorem (Gn,d is Hamiltonian)
For all 3≤ d ≤ n−1 we have that Gn,d is Hamiltonian a.a.s.

Theorem (Ben-Shimon, Krivelevich and Sudakov, 2011)
For every ε > 0 and d sufficiently large, a.a.s. Gn,d is
(1−ε)d/6-resilient with respect to Hamiltonicity.

They conjectured that the true value should be closer to d/2.

Padraig Condon Resilience of random graphs with respect to Hamiltonicity



Dirac’s theorem for random regular graphs

We generate a random regular graph via the model Gn,d by
choosing a graph uniformly at random among the set of d-regular
graphs on n vertices.
The following result follows from the work of Robinson and
Wormald; Cooper, Frieze, Reed; Krivelevich, Sudakov, Vu,
Wormald.

Theorem (Gn,d is Hamiltonian)
For all 3≤ d ≤ n−1 we have that Gn,d is Hamiltonian a.a.s.

Theorem (Ben-Shimon, Krivelevich and Sudakov, 2011)
For every ε > 0 and d sufficiently large, a.a.s. Gn,d is
(1−ε)d/6-resilient with respect to Hamiltonicity.

They conjectured that the true value should be closer to d/2.

Padraig Condon Resilience of random graphs with respect to Hamiltonicity



Dirac’s theorem for random regular graphs

We generate a random regular graph via the model Gn,d by
choosing a graph uniformly at random among the set of d-regular
graphs on n vertices.
The following result follows from the work of Robinson and
Wormald; Cooper, Frieze, Reed; Krivelevich, Sudakov, Vu,
Wormald.

Theorem (Gn,d is Hamiltonian)
For all 3≤ d ≤ n−1 we have that Gn,d is Hamiltonian a.a.s.

Theorem (Ben-Shimon, Krivelevich and Sudakov, 2011)
For every ε > 0 and d sufficiently large, a.a.s. Gn,d is
(1−ε)d/6-resilient with respect to Hamiltonicity.

They conjectured that the true value should be closer to d/2.

Padraig Condon Resilience of random graphs with respect to Hamiltonicity



Dirac’s theorem for random regular graphs

We generate a random regular graph via the model Gn,d by
choosing a graph uniformly at random among the set of d-regular
graphs on n vertices.
The following result follows from the work of Robinson and
Wormald; Cooper, Frieze, Reed; Krivelevich, Sudakov, Vu,
Wormald.

Theorem (Gn,d is Hamiltonian)
For all 3≤ d ≤ n−1 we have that Gn,d is Hamiltonian a.a.s.

Theorem (Ben-Shimon, Krivelevich and Sudakov, 2011)
For every ε > 0 and d sufficiently large, a.a.s. Gn,d is
(1−ε)d/6-resilient with respect to Hamiltonicity.

They conjectured that the true value should be closer to d/2.

Padraig Condon Resilience of random graphs with respect to Hamiltonicity



Dirac’s theorem for random regular graphs

Dirac’s theorem for random regular graphs.

Theorem (Condon, Espuny-D́ıaz, Girão, Kühn and Osthus, 2019+)
For every ε > 0 there exists D such that, for every d > D, the
random graph Gn,d is a.a.s. (1/2−ε)d-resilient with respect to
Hamiltonicity.

Our result is best possible: firstly, the minimum degree bound
cannot be improved, and secondly, the condition that d is large
cannot be omitted.

Theorem (Condon, Espuny-D́ıaz, Girão, Kühn and Osthus, 2019+)
For any odd d > 2, the random graph Gn,d is not
a.a.s. (d−1)/2-resilient with respect to Hamiltonicity.
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Beyond Dirac

Theorem (Pósa, 1962)
Let G have degree sequence d1 ≤ d2 ≤ . . .≤ dn such that di ≥ i + 1
for all i < n/2. Then, G is Hamiltonian.

Theorem (Chvátal, 1972)
Let G have degree sequence d1 ≤ d2 ≤ . . .≤ dn such that, for all
i < n/2, we have that di ≥ i + 1 or dn−i ≥ n− i . Then, G is
Hamiltonian.

Question: Do Pósa’s and Chvátal’s results have corresponding
analogues in Gn,p, like Dirac’s result?
Answer: YES for Pósa, NO for Chvátal.
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Theorem (Pósa, 1962)
Let G have degree sequence d1 ≤ d2 ≤ . . .≤ dn such that di ≥ i + 1
for all i < n/2. Then, G is Hamiltonian.

Theorem (Chvátal, 1972)
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Beyond Dirac: Gn,p

Pósa’s theorem for random graphs.

Theorem (Condon, Espuny D́ıaz, Kim, Kühn, Osthus, ’18+)
For every ε > 0, there exists C > 0 such that, for p ≥ C log n/n,
a.a.s. every subgraph G of Gn,p with degree sequence (d1, . . . ,dn)
with di ≥ (i +εn)p for all i < n/2 is Hamiltonian.

There exist counterexamples to Chvátal for random graphs.

Theorem (Condon, Espuny D́ıaz, Kim, Kühn, Osthus, ’18+)
For p� log n/n, a.a.s. there exist subgraphs G of Gn,p with degree
sequence (d1, . . . ,dn) satisfying di ≥ (i +εn)p or
dn−i ≥ (n− i +εn)p for all i < n/2 which are not Hamiltonian.

In fact, there exist subgraphs not containing a perfect matching.
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Proof ideas: Dirac in Gn,d

Consider G = Gn,d .

Let H ⊆ G be such that ∆(H)≤ (1/2−ε)d and let
G ′ := G \H.
We use that G ′ has good expansion properties.

Definition (3-expander)
An n-vertex graph G is called a 3-expander if it is connected and,
for every S ⊆ [n] with |S| ≤ n/400, we have |NG(S)| ≥ 3|S|.

We show there exists a ‘sparse’ subgraph R ⊆ G ′ which is a
3-expander.

Padraig Condon Resilience of random graphs with respect to Hamiltonicity



Proof ideas: Dirac in Gn,d

Consider G = Gn,d .
Let H ⊆ G be such that ∆(H)≤ (1/2−ε)d and let
G ′ := G \H.

We use that G ′ has good expansion properties.

Definition (3-expander)
An n-vertex graph G is called a 3-expander if it is connected and,
for every S ⊆ [n] with |S| ≤ n/400, we have |NG(S)| ≥ 3|S|.

We show there exists a ‘sparse’ subgraph R ⊆ G ′ which is a
3-expander.

Padraig Condon Resilience of random graphs with respect to Hamiltonicity



Proof ideas: Dirac in Gn,d

Consider G = Gn,d .
Let H ⊆ G be such that ∆(H)≤ (1/2−ε)d and let
G ′ := G \H.
We use that G ′ has good expansion properties.

Definition (3-expander)
An n-vertex graph G is called a 3-expander if it is connected and,
for every S ⊆ [n] with |S| ≤ n/400, we have |NG(S)| ≥ 3|S|.

We show there exists a ‘sparse’ subgraph R ⊆ G ′ which is a
3-expander.

Padraig Condon Resilience of random graphs with respect to Hamiltonicity



Proof ideas: Dirac in Gn,d

Consider G = Gn,d .
Let H ⊆ G be such that ∆(H)≤ (1/2−ε)d and let
G ′ := G \H.
We use that G ′ has good expansion properties.

Definition (3-expander)
An n-vertex graph G is called a 3-expander if it is connected and,
for every S ⊆ [n] with |S| ≤ n/400, we have |NG(S)| ≥ 3|S|.

We show there exists a ‘sparse’ subgraph R ⊆ G ′ which is a
3-expander.

Padraig Condon Resilience of random graphs with respect to Hamiltonicity



Proof ideas: Dirac in Gn,d

Consider G = Gn,d .
Let H ⊆ G be such that ∆(H)≤ (1/2−ε)d and let
G ′ := G \H.
We use that G ′ has good expansion properties.

Definition (3-expander)
An n-vertex graph G is called a 3-expander if it is connected and,
for every S ⊆ [n] with |S| ≤ n/400, we have |NG(S)| ≥ 3|S|.

We show there exists a ‘sparse’ subgraph R ⊆ G ′ which is a
3-expander.

Padraig Condon Resilience of random graphs with respect to Hamiltonicity



Proof outline: finding boosters

We consider longest paths in R.

By a theorem of Pósa a 3-expander has many of such paths,
with different endpoints.

=⇒ there is a ‘large’ set edges whose inclusion would make R
Hamiltonian, or increase the length of a longest path.

In fact, we consider ‘booster’ pairs of edges, which have the same
effect.

Padraig Condon Resilience of random graphs with respect to Hamiltonicity



Proof outline: finding boosters

We consider longest paths in R.
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Proof outline: finding boosters

By passing from R to G ′ we argue that some of these booster
pairs must exist.

We add these edges to R to make it Hamiltonian or else to
increase the length of a longest path.
We iterate this process at most n times.
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Open problems: Gn,p

Shifted Chvátal resilience.

Conjecture (Condon, Espuny D́ıaz, Kim, Kühn, Osthus, ’18+)
For p� log n/n, a.a.s. every subgraph G of Gn,p with degree
sequence (d1, . . . ,dn) satisfying di ≥ (i +εn)p or
dn−i−εn ≥ (n− i +εn)p for all i < n/2 is Hamiltonian.

The conjecture holds for perfect matchings.

Theorem (Condon, Espuny D́ıaz, Kim, Kühn, Osthus, ’18+)
For every ε > 0, there exists C > 0 such that, for p ≥ C log n/n,
a.a.s. every subgraph G of Gn,p with degree sequence (d1, . . . ,dn)
satisfying di ≥ (i +εn)p or dn−i−εn ≥ (n− i +εn)p for all i < n/2
contains a perfect matching.
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For every ε > 0, there exists C > 0 such that, for p ≥ C log n/n,
a.a.s. every subgraph G of Gn,p with degree sequence (d1, . . . ,dn)
satisfying di ≥ (i +εn)p or dn−i−εn ≥ (n− i +εn)p for all i < n/2
contains a perfect matching.

Padraig Condon Resilience of random graphs with respect to Hamiltonicity



Open problems: Gn,d

Can we obtain bounds on the resilience for small d?

Question
Given any fixed even d, determine whether the graph Gn,d is
a.a.s. (d/2−1)-resilient with respect to Hamiltonicity.

Question
What is the likely resilience of Gn,4 with respect to Hamiltonicity?
Is a graph obtained from Gn,4 by removing any matching
a.a.s. Hamiltonian?
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