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Decompositions

Definition
An F -decomposition of a graph G is a partition of the edge set of
G where each part is isomorphic to F .

•If G = Kn and F = K3, this is a Steiner triple system of order n

•Kirkman’s schoolgirl problem (1850): Does K15 decompose into
triangle factors?
•Walecki’s theorem (1892): Kn has a decomposition into
Hamilton cycles for every odd n

Common generalization: Oberwolfach problem
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Formal statement

cycle factor = vertex disjoint cycles spanning all vertices

Oberwolfach problem (Ringel, 1967)
Let F be any cycle factor on n vertices. Does Kn have an
F -decomposition?

posed at Oberwolfach conference and can be rephrased as:

Oberwolfach problem (Ringel, 1967)
Given round tables with n seats in total and n people who eat n−1

2
meals together, is it possible to find a seating chart such that
everyone sits next to everyone else exactly once?
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Partial results

•F = Hamilton cycle: Walecki (1892)
•F = triangle factor: Ray-Chaudhuri & Wilson, and Lu (1970s)
...
Theorem (Bryant and Scharaschkin, 2009)
∃ infinitely many n such that for any cycle factor F on n vertices,
Kn has F -decomposition.
...
•Traetta (2013): solution if F consists of two cycles only
•approximate versions by Ferber–Lee–Mousset and
Kim–Kühn–Osthus–Tyomkyn (2017)
...

≥ 100 research papers covering many partial results
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Resolution

The Oberwolfach problem has a solution for all sufficiently large n.

Theorem (Glock, Joos, Kim, Kühn, Osthus, 18+)
∃n0 such that for all odd n ≥ n0 and any cycle factor F on n
vertices, Kn has an F -decomposition.

•for even n, one can ask for a decomposition
of Kn−perfect matching
•Hamilton-Waterloo problem: two cycle factors F1,F2 given,
and prescribed how often each of them is to be used in the
decomposition

We also solve these problems (for sufficiently large n).
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Most general statement:

Theorem
Suppose 1/n� ξ� 1/∆,α < 1. Let G be an r-regular n-vertex
graph with r ≥ (1− ξ)n and let F ,H be collections of graphs
satisfying the following:

F is a collection of at least αn copies of F , where F is a
2-regular n-vertex graph;
each H ∈H is a ξ-separable n-vertex rH -regular graph for
some rH ≤∆;
e(F ∪H) = e(G).

Then G decomposes into F ∪H.

⇒ can choose first ξn factors greedily
‘Separable’=‘small bandwidth’=2-factors, powers of cycles,
H-factors...
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Proof sketch: simplified setup

A C`-decomposition of G is resolvable if it can be partitioned into
C`-factors.
So if F is a C`-factor, then an F -decomposition is precisely a
resolvable C`-decomposition.
(existence of resolvable C`-decompositions in Kn proved by
Alspach, Schellenberg, Stinson, Wagner)

But F might consist of cycles of arbitrary lengths.
Approach: reduce the problem of finding F -decomposition to
finding resolvable C`-decompositions in a quasi-random graphs, for
` ∈ {3,4,5}.
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Rewiring: simplified setup

Suppose all cycle lengths `1, . . . , `t in F are divisible by 3, and we
seek F -decomposition of Kn,n,n, where n =∑

`i/3.

V3

V1

V2

	 π
π(w)

w
v z

w

(w ,z) ∈ π

Let π be a permutation on V3 with cycles of lengths `1/3, . . . , `t/3.
Given H ⊆ Kn,n,n, obtain π(H) by replacing vw with vπ(w)
whenever v ∈ V2,w ∈ V3

H = C3-factor ⇒ π(H) = F

resolvable C3-decomposition ⇒ F -decomposition
(resolvable C3-decomposition if Kn,n,n exists, eg by Bose,
Shrikhande and Parker)
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Proof sketch: general setup

Suppose aim to find F -decomposition of Kn.

Absorption approach
1 Take out highly structured absorbing subgraph A.
2 Find approximate decomposition of Kn−A into copies of F to

leave a sparse leftover L.
3 Use ‘structure’ of A to find F -decomposition of A∪L?

First used in context of decompositions for proof of Kelly’s
conjecture on Hamilton decompositions (Kühn, Osthus’13)
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Tool for approximate decomposition

Can apply special case of ‘bandwidth theorem for approximate
decompositions’:

Theorem (Condon, Kim, Kühn, Osthus, 2017+)
Suppose H1, . . . ,Hs is a collection of n-vertex 2-regular graphs and
G is an n-vertex d-regular graph such that

d ≥ (1 + o(1))9n/10 and s ≤ (1−o(1))d/2.

Then H1, . . . ,Hs pack into G.

Proof is based on:
blow-up lemma for approximate decompositions
Szemerédi’s regularity lemma

actually prove version for general bounded degree graphs of small
bandwidth
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The absorbing structure

The absorbing structure A:
grey/black graphs between classes are quasi-random

π

Can show that A has an F -decomposition via a generalization of
switching permutation argument described earlier
(by reducing to resolvable C3, C4 and C5-decompositions)
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Tool for finding resolvable decomposition

To show absorber has an F -decomposition (via switching
permutation argument), we use:
Resolvable C`-decompositions exist in quasirandom partite graphs

Theorem (Keevash, 2018+)
Suppose that G is a blow-up of an `-cycle so that each blown-up
pair is quasirandom and regular. Then G has a resolvable
C`-decomposition.

Note this follows from:
the existence of `-wheel decompositions in a quasi-random blow-up
of an `-wheel
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The absorbing structure

The absorbing structure A:

π

Let L be the leftover from the approximate decomposition step.
(1) Use suitable edges E of A to cover L with copies of F
(2) Then decompose A−E into copies of F ,

(by reducing to resolvable C3, C4, and C5-decomposition).
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Proof sketch: general setup
Recall: L is the leftover from the approximate decomposition step.

(1) Use suitable edges E of A to cover L with copies of F
(2) Then decompose A−E into copies of F ,

(by reducing to resolvable C3, C4, and C5-decomposition).
For (1), decompose L into small matchings Mi and extend each Mi
into a copy Mi ∪Ei of F using edges Ei of A

Challenges/Problems:
Need to augment A by adding edges inside clusters in order to
cover edges of L between clusters
Need to do the extension in a ‘globally balanced’ way,
i.e. E = ∪i Ei is ‘balanced’ with respect to A.
This ensures that A−E is still F -decomposable.
Above approach only works if there are ηn vertices of F in
long cycles
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Open problems and related questions

Not only 2-regular graphs?

Conjecture
Suppose ∆� n. Let F1, . . . ,Ft be n-vertex graphs such that Fi is
ri -regular for some ri ≤∆ and

∑
i∈[t] ri = n−1. Then there is a

decomposition of Kn into F1, . . . ,Ft .

Interesting special case
Fi is a kth power of a Hamilton cycle
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Open problems: Hamilton decompositions of hypergraphs

Theorem (Walecki, 1892)
Complete graph Kn has a Hamilton decomposition ⇔ n odd

Problem: Prove a hypergraph version of Walecki’s theorem.

loose Hamilton cycle tight Hamilton cycle Berge Hamilton cycle

open open solved (K+O)

approximate versions exist for the loose and tight case
(Bal, Frieze, Krivelevich, Loh) for infinitely many n
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Open problems: Euler circuits

Conjecture (Chung, Diaconis and Graham, 1989 ($100))
For sufficiently large n, K k

n has a tight Euler tour iff k |
(n−1

k−1
)
.

Curtis, Hines, Hurlbert, Moyer (2009): approximate solution

CHHM: At the 2004 Banff Workshop ... it was suggested.. that a
modest inflationary rate should revalue the prize near 250.04....
Due to our proof that near-universal cycles exist, we believe that
we deserve asymptotically much of the prize money, or
(1−o(1))(250.04). Since we do not know the speed of the o(1)
term, we have made a conservative estimate of 249.99.

Theorem (Glock, Joos, Kühn, Osthus, 18+)
The conjecture is true.

based on existence of F -designs (Glock, Lo, Kühn, Osthus, 17+)

Daniela Kühn Oberwolfach problem



Open problems: Euler circuits

Conjecture (Chung, Diaconis and Graham, 1989 ($100))
For sufficiently large n, K k

n has a tight Euler tour iff k |
(n−1

k−1
)
.

Curtis, Hines, Hurlbert, Moyer (2009): approximate solution
CHHM: At the 2004 Banff Workshop ... it was suggested.. that a
modest inflationary rate should revalue the prize near 250.04....

Due to our proof that near-universal cycles exist, we believe that
we deserve asymptotically much of the prize money, or
(1−o(1))(250.04). Since we do not know the speed of the o(1)
term, we have made a conservative estimate of 249.99.

Theorem (Glock, Joos, Kühn, Osthus, 18+)
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Open problems: Euler circuits

Theorem (Glock, Joos, Kühn, Osthus, 18+)
For sufficiently large n, K k

n has a tight Euler tour if and only if
k |
(n−1

k−1
)
.

Conjecture
Every k-graph G with δk−1(G)≥ (1/2 + o(1))n has a tight Euler
tour if all vertex degrees are divisible by k.
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Bon appetit!
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