Resolution of the Oberwolfach problem

Daniela Kühn

joint work with Stefan Glock, Felix Joos, Jaehoon Kim and Deryk Osthus

University of Birmingham

April 2019

Decompositions

Definition

An F-decomposition of a graph G is a partition of the edge set of G where each part is isomorphic to F.

- If $G = K_n$ and $F = K_3$, this is a Steiner triple system of order n
- Kirkman's schoolgirl problem (1850): Does K_{15} decompose into triangle factors?
- Walecki's theorem (1892): K_n has a decomposition into Hamilton cycles for every odd n

Common generalization: Oberwolfach problem

cycle factor = vertex disjoint cycles spanning all vertices

Oberwolfach problem (Ringel, 1967)

Let F be any cycle factor on n vertices. Does K_n have an F-decomposition?

posed at Oberwolfach conference and can be rephrased as:

Oberwolfach problem (Ringel, 1967)

Given round tables with n seats in total and n people who eat $\frac{n-1}{2}$ meals together, is it possible to find a seating chart such that everyone sits next to everyone else exactly once?

Oberwolfach problem (Ringel, 1967)

Let F be any cycle factor on n vertices. Does K_n have an F-decomposition?

Oberwolfach problem (Ringel, 1967)

Let F be any cycle factor on n vertices. Does K_n have an F-decomposition?

Oberwolfach problem (Ringel, 1967)

Let F be any cycle factor on n vertices. Does K_n have an F-decomposition?

Oberwolfach problem (Ringel, 1967)

Let F be any cycle factor on n vertices. Does K_n have an F-decomposition?

Partial results

- F = Hamilton cycle: Walecki (1892)
- ullet F= triangle factor: Ray-Chaudhuri & Wilson, and Lu (1970s)

:

Theorem (Bryant and Scharaschkin, 2009)

 \exists infinitely many n such that for any cycle factor F on n vertices, K_n has F-decomposition.

:

- Traetta (2013): solution if F consists of two cycles only
- approximate versions by Ferber–Lee–Mousset and Kim–Kühn–Osthus–Tyomkyn (2017)

:

 ≥ 100 research papers covering many partial results

Resolution

The Oberwolfach problem has a solution for all sufficiently large n.

Theorem (Glock, Joos, Kim, Kühn, Osthus, 18⁺)

 $\exists n_0$ such that for all odd $n \ge n_0$ and any cycle factor F on n vertices, K_n has an F-decomposition.

Resolution

The Oberwolfach problem has a solution for all sufficiently large n.

Theorem (Glock, Joos, Kim, Kühn, Osthus, 18⁺)

 $\exists n_0$ such that for all odd $n \ge n_0$ and any cycle factor F on n vertices, K_n has an F-decomposition.

- for even n, one can ask for a decomposition of K_n perfect matching
- Hamilton-Waterloo problem: two cycle factors F_1 , F_2 given, and prescribed how often each of them is to be used in the decomposition

We also solve these problems (for sufficiently large n).

Most general statement:

Theorem

Suppose $1/n \ll \xi \ll 1/\Delta, \alpha < 1$. Let G be an r-regular n-vertex graph with $r \geq (1-\xi)n$ and let \mathcal{F}, \mathcal{H} be collections of graphs satisfying the following:

- \mathcal{F} is a collection of at least αn copies of \mathcal{F} , where \mathcal{F} is a 2-regular n-vertex graph;
- each H∈ H is a ξ-separable n-vertex r_H-regular graph for some r_H ≤ Δ;
- $e(\mathcal{F} \cup \mathcal{H}) = e(G)$.

Then G decomposes into $\mathcal{F} \cup \mathcal{H}$.

- \Rightarrow can choose first ξn factors greedily
- 'Separable'='small bandwidth'=2-factors, powers of cycles, H-factors...

Proof sketch: simplified setup

A C_{ℓ} -decomposition of G is resolvable if it can be partitioned into C_{ℓ} -factors.

So if F is a C_{ℓ} -factor, then an F-decomposition is precisely a resolvable C_{ℓ} -decomposition.

(existence of resolvable C_{ℓ} -decompositions in K_n proved by Alspach, Schellenberg, Stinson, Wagner)

Proof sketch: simplified setup

A C_ℓ -decomposition of G is resolvable if it can be partitioned into C_ℓ -factors.

So if F is a C_ℓ -factor, then an F-decomposition is precisely a resolvable C_ℓ -decomposition.

(existence of resolvable C_{ℓ} -decompositions in K_n proved by Alspach, Schellenberg, Stinson, Wagner)

But F might consist of cycles of arbitrary lengths.

Approach: reduce the problem of finding F-decomposition to finding resolvable C_ℓ -decompositions in a quasi-random graphs, for $\ell \in \{3,4,5\}$.

Suppose all cycle lengths ℓ_1, \dots, ℓ_t in F are divisible by 3, and we seek F-decomposition of $K_{n,n,n}$, where $n = \sum \ell_i/3$.

Let π be a permutation on V_3 with cycles of lengths $\ell_1/3,\ldots,\ell_t/3$.

Suppose all cycle lengths ℓ_1, \dots, ℓ_t in F are divisible by 3, and we seek F-decomposition of $K_{n,n,n}$, where $n = \sum \ell_i/3$.

Let π be a permutation on V_3 with cycles of lengths $\ell_1/3,\ldots,\ell_t/3$. Given $H\subseteq K_{n,n,n}$, obtain $\pi(H)$ by replacing vw with $v\pi(w)$ whenever $v\in V_2, w\in V_3$

Suppose all cycle lengths ℓ_1, \dots, ℓ_t in F are divisible by 3, and we seek F-decomposition of $K_{n,n,n}$, where $n = \sum \ell_i/3$.

 $H=C_3$ -factor $\Rightarrow \pi(H)=F$ resolvable C_3 -decomposition \Rightarrow F-decomposition (resolvable C_3 -decomposition if $K_{n,n,n}$ exists, eg by Bose, Shrikhande and Parker)

Proof sketch: general setup

Suppose aim to find F-decomposition of K_n .

Absorption approach

- **1** Take out highly structured absorbing subgraph *A*.
- ② Find approximate decomposition of $K_n A$ into copies of F to leave a sparse leftover L.
- **3** Use 'structure' of A to find F-decomposition of $A \cup L$?

First used in context of decompositions for proof of Kelly's conjecture on Hamilton decompositions (Kühn, Osthus'13)

Tool for approximate decomposition

Can apply special case of 'bandwidth theorem for approximate decompositions':

Theorem (Condon, Kim, Kühn, Osthus, 2017⁺)

Suppose H_1, \ldots, H_s is a collection of n-vertex 2-regular graphs and G is an n-vertex d-regular graph such that

$$d \ge (1 + o(1))9n/10$$
 and $s \le (1 - o(1))d/2$.

Then H_1, \ldots, H_s pack into G.

Proof is based on:

- blow-up lemma for approximate decompositions
- Szemerédi's regularity lemma

actually prove version for general bounded degree graphs of small bandwidth

The absorbing structure

The absorbing structure *A*:

grey/black graphs between classes are quasi-random

Can show that A has an F-decomposition via a generalization of switching permutation argument described earlier (by reducing to resolvable C_3 , C_4 and C_5 -decompositions)

Tool for finding resolvable decomposition

To show absorber has an F-decomposition (via switching permutation argument), we use:

Resolvable C_ℓ -decompositions exist in quasirandom partite graphs

Theorem (Keevash, 2018⁺)

Suppose that G is a blow-up of an ℓ -cycle so that each blown-up pair is quasirandom and regular. Then G has a resolvable C_{ℓ} -decomposition.

Note this follows from:

the existence of ℓ -wheel decompositions in a quasi-random blow-up of an ℓ -wheel

The absorbing structure

The absorbing structure A:

Let L be the leftover from the approximate decomposition step.

- (1) Use suitable edges E of A to cover L with copies of F
- (2) Then decompose A E into copies of F, (by reducing to resolvable C_3 , C_4 , and C_5 -decomposition).

Proof sketch: general setup

Recall: L is the leftover from the approximate decomposition step.

- (1) Use suitable edges E of A to cover L with copies of F
- (2) Then decompose A E into copies of F, (by reducing to resolvable C_3 , C_4 , and C_5 -decomposition).
- For (1), decompose L into small matchings M_i and extend each M_i into a copy $M_i \cup E_i$ of F using edges E_i of A

Proof sketch: general setup

Recall: L is the leftover from the approximate decomposition step.

- (1) Use suitable edges E of A to cover L with copies of F
- (2) Then decompose A E into copies of F, (by reducing to resolvable C_3 , C_4 , and C_5 -decomposition).

For (1), decompose L into small matchings M_i and extend each M_i into a copy $M_i \cup E_i$ of F using edges E_i of A

Challenges/Problems:

- Need to augment A by adding edges inside clusters in order to cover edges of L between clusters
- Need to do the extension in a 'globally balanced' way, i.e. $E = \cup_i E_i$ is 'balanced' with respect to A. This ensures that A E is still F-decomposable.
- Above approach only works if there are ηn vertices of F in long cycles

Open problems and related questions

Not only 2-regular graphs?

Conjecture

Suppose $\Delta \ll n$. Let F_1, \ldots, F_t be n-vertex graphs such that F_i is r_i -regular for some $r_i \leq \Delta$ and $\sum_{i \in [t]} r_i = n-1$. Then there is a decomposition of K_n into F_1, \ldots, F_t .

Interesting special case

• F_i is a kth power of a Hamilton cycle

Open problems: Hamilton decompositions of hypergraphs

Theorem (Walecki, 1892)

Complete graph K_n has a Hamilton decomposition \Leftrightarrow n odd

Problem: Prove a hypergraph version of Walecki's theorem.

approximate versions exist for the loose and tight case (Bal, Frieze, Krivelevich, Loh) for infinitely many n

Conjecture (Chung, Diaconis and Graham, 1989 (\$100))

For sufficiently large n, K_n^k has a tight Euler tour iff $k \mid {n-1 \choose k-1}$.

Curtis, Hines, Hurlbert, Moyer (2009): approximate solution

Conjecture (Chung, Diaconis and Graham, 1989 (\$100))

For sufficiently large n, K_n^k has a tight Euler tour iff $k \mid {n-1 \choose k-1}$.

Curtis, Hines, Hurlbert, Moyer (2009): approximate solution

CHHM: At the 2004 Banff Workshop ... it was suggested.. that a modest inflationary rate should revalue the prize near 250.04....

Conjecture (Chung, Diaconis and Graham, 1989 (\$100))

For sufficiently large n, K_n^k has a tight Euler tour iff $k \mid {n-1 \choose k-1}$.

Curtis, Hines, Hurlbert, Moyer (2009): approximate solution CHHM: At the 2004 Banff Workshop ... it was suggested. that a modest inflationary rate should revalue the prize near 250.04.... Due to our proof that near-universal cycles exist, we believe that we deserve asymptotically much of the prize money, or (1-o(1))(250.04). Since we do not know the speed of the o(1) term, we have made a conservative estimate of 249.99.

Conjecture (Chung, Diaconis and Graham, 1989 (\$100))

For sufficiently large n, K_n^k has a tight Euler tour iff $k \mid {n-1 \choose k-1}$.

Curtis, Hines, Hurlbert, Moyer (2009): approximate solution

CHHM: At the 2004 Banff Workshop ... it was suggested. that a modest inflationary rate should revalue the prize near 250.04.... Due to our proof that near-universal cycles exist, we believe that we deserve asymptotically much of the prize money, or (1-o(1))(250.04). Since we do not know the speed of the o(1) term, we have made a conservative estimate of 249.99.

Theorem (Glock, Joos, Kühn, Osthus, $18^+)$

The conjecture is true.

based on existence of F-designs (Glock, Lo, Kühn, Osthus, 17⁺)

Theorem (Glock, Joos, Kühn, Osthus, 18⁺)

For sufficiently large n, K_n^k has a tight Euler tour if and only if $k \mid \binom{n-1}{k-1}$.

Conjecture

Every k-graph G with $\delta_{k-1}(G) \ge (1/2 + o(1))n$ has a tight Euler tour if all vertex degrees are divisible by k.

Bon appetit!