Resolution of the Oberwolfach problem

Daniela Kühn

joint work with Stefan Glock, Felix Joos, Jaehoon Kim and Deryk Osthus
University of Birmingham

Decompositions

Definition

An F-decomposition of a graph G is a partition of the edge set of G where each part is isomorphic to F.

- If $G=K_{n}$ and $F=K_{3}$, this is a Steiner triple system of order n
- Kirkman's schoolgirl problem (1850): Does K_{15} decompose into triangle factors?
- Walecki's theorem (1892): K_{n} has a decomposition into Hamilton cycles for every odd n

Common generalization: Oberwolfach problem
cycle factor $=$ vertex disjoint cycles spanning all vertices

Oberwolfach problem (Ringel, 1967)

Let F be any cycle factor on n vertices. Does K_{n} have an F-decomposition?
posed at Oberwolfach conference and can be rephrased as:

Oberwolfach problem (Ringel, 1967)

Given round tables with n seats in total and n people who eat $\frac{n-1}{2}$ meals together, is it possible to find a seating chart such that everyone sits next to everyone else exactly once?

Formal statement

Oberwolfach problem (Ringel, 1967)

Let F be any cycle factor on n vertices. Does K_{n} have an F-decomposition?

Example: $F=C_{3} \cup C_{4} \cup C_{4}$

Oberwolfach problem (Ringel, 1967)

Let F be any cycle factor on n vertices. Does K_{n} have an F-decomposition?

Example: $F=C_{3} \cup C_{4} \cup C_{4}$

Oberwolfach problem (Ringel, 1967)

Let F be any cycle factor on n vertices. Does K_{n} have an F-decomposition?

Example: $F=C_{3} \cup C_{4} \cup C_{4}$

Formal statement

Oberwolfach problem (Ringel, 1967)

Let F be any cycle factor on n vertices. Does K_{n} have an F-decomposition?

Example: $F=C_{3} \cup C_{4} \cup C_{4}$

Partial results

- $F=$ Hamilton cycle: Walecki (1892)
- $F=$ triangle factor: Ray-Chaudhuri \& Wilson, and Lu (1970s) :

Theorem (Bryant and Scharaschkin, 2009)

\exists infinitely many n such that for any cycle factor F on n vertices, K_{n} has F-decomposition.
\vdots

- Traetta (2013): solution if F consists of two cycles only
- approximate versions by Ferber-Lee-Mousset and

Kim-Kühn-Osthus-Tyomkyn (2017)
≥ 100 research papers covering many partial results

Resolution

The Oberwolfach problem has a solution for all sufficiently large n.
Theorem (Glock, Joos, Kim, Kühn, Osthus, 18+)
$\exists n_{0}$ such that for all odd $n \geq n_{0}$ and any cycle factor F on n vertices, K_{n} has an F-decomposition.

Resolution

The Oberwolfach problem has a solution for all sufficiently large n.
Theorem (Glock, Joos, Kim, Kühn, Osthus, 18+)
$\exists n_{0}$ such that for all odd $n \geq n_{0}$ and any cycle factor F on n vertices, K_{n} has an F-decomposition.

- for even n, one can ask for a decomposition of K_{n} - perfect matching
- Hamilton-Waterloo problem: two cycle factors F_{1}, F_{2} given, and prescribed how often each of them is to be used in the decomposition

We also solve these problems (for sufficiently large n).

Most general statement:

Theorem

Suppose $1 / n \ll \xi \ll 1 / \Delta, \alpha<1$. Let G be an r-regular n-vertex graph with $r \geq(1-\xi) n$ and let \mathcal{F}, \mathcal{H} be collections of graphs satisfying the following:

- \mathcal{F} is a collection of at least αn copies of F, where F is a 2-regular n-vertex graph;
- each $H \in \mathcal{H}$ is a ξ-separable n-vertex r_{H}-regular graph for some $r_{H} \leq \Delta$;
- $e(\mathcal{F} \cup \mathcal{H})=e(G)$.

Then G decomposes into $\mathcal{F} \cup \mathcal{H}$.

- \Rightarrow can choose first ξn factors greedily
- 'Separable'='small bandwidth'=2-factors, powers of cycles, H-factors...

Proof sketch: simplified setup

A C_{ℓ}-decomposition of G is resolvable if it can be partitioned into C_{ℓ}-factors.

So if F is a C_{ℓ}-factor, then an F-decomposition is precisely a resolvable C_{ℓ}-decomposition.
(existence of resolvable C_{ℓ}-decompositions in K_{n} proved by Alspach, Schellenberg, Stinson, Wagner)

Proof sketch: simplified setup

A C_{ℓ}-decomposition of G is resolvable if it can be partitioned into $C_{\ell^{-}}$-factors.

So if F is a C_{ℓ}-factor, then an F-decomposition is precisely a resolvable C_{ℓ}-decomposition.
(existence of resolvable C_{ℓ}-decompositions in K_{n} proved by Alspach, Schellenberg, Stinson, Wagner)

But F might consist of cycles of arbitrary lengths.
Approach: reduce the problem of finding F-decomposition to finding resolvable C_{ℓ}-decompositions in a quasi-random graphs, for $\ell \in\{3,4,5\}$.

Rewiring: simplified setup

Suppose all cycle lengths $\ell_{1}, \ldots, \ell_{t}$ in F are divisible by 3 , and we seek F-decomposition of $K_{n, n, n}$, where $n=\sum \ell_{i} / 3$.

Rewiring: simplified setup

Suppose all cycle lengths $\ell_{1}, \ldots, \ell_{t}$ in F are divisible by 3 , and we seek F-decomposition of $K_{n, n, n}$, where $n=\sum \ell_{i} / 3$.

Let π be a permutation on V_{3} with cycles of lengths $\ell_{1} / 3, \ldots, \ell_{t} / 3$.

Rewiring: simplified setup

Suppose all cycle lengths $\ell_{1}, \ldots, \ell_{t}$ in F are divisible by 3 , and we seek F-decomposition of $K_{n, n, n}$, where $n=\sum \ell_{i} / 3$.

Let π be a permutation on V_{3} with cycles of lengths $\ell_{1} / 3, \ldots, \ell_{t} / 3$. Given $H \subseteq K_{n, n, n}$, obtain $\pi(H)$ by replacing $v w$ with $v \pi(w)$ whenever $v \in V_{2}, w \in V_{3}$

Rewiring: simplified setup

Suppose all cycle lengths $\ell_{1}, \ldots, \ell_{t}$ in F are divisible by 3 , and we seek F-decomposition of $K_{n, n, n}$, where $n=\sum \ell_{i} / 3$.

Rewiring: simplified setup

Suppose all cycle lengths $\ell_{1}, \ldots, \ell_{t}$ in F are divisible by 3 , and we seek F-decomposition of $K_{n, n, n}$, where $n=\sum \ell_{i} / 3$.

Rewiring: simplified setup

Suppose all cycle lengths $\ell_{1}, \ldots, \ell_{t}$ in F are divisible by 3 , and we seek F-decomposition of $K_{n, n, n}$, where $n=\sum \ell_{i} / 3$.

$H=C_{3}$-factor $\Rightarrow \pi(H)=F$

Rewiring: simplified setup

Suppose all cycle lengths $\ell_{1}, \ldots, \ell_{t}$ in F are divisible by 3 , and we seek F-decomposition of $K_{n, n, n}$, where $n=\sum \ell_{i} / 3$.

$H=C_{3}$-factor $\Rightarrow \pi(H)=F$
resolvable C_{3}-decomposition $\Rightarrow F$-decomposition (resolvable C_{3}-decomposition if $K_{n, n, n}$ exists, eg by Bose,
Shrikhande and Parker)

Proof sketch: general setup

Suppose aim to find F-decomposition of K_{n}.

Absorption approach

(1) Take out highly structured absorbing subgraph A.
(2) Find approximate decomposition of $K_{n}-A$ into copies of F to leave a sparse leftover L.
(3) Use 'structure' of A to find F-decomposition of $A \cup L$?

First used in context of decompositions for proof of Kelly's conjecture on Hamilton decompositions (Kühn, Osthus'13)

Tool for approximate decomposition

Can apply special case of 'bandwidth theorem for approximate decompositions':

Theorem (Condon, Kim, Kühn, Osthus, 2017 ${ }^{+}$)

Suppose H_{1}, \ldots, H_{s} is a collection of n-vertex 2-regular graphs and G is an n-vertex d-regular graph such that

$$
d \geq(1+o(1)) 9 n / 10 \text { and } s \leq(1-o(1)) d / 2 .
$$

Then H_{1}, \ldots, H_{s} pack into G.
Proof is based on:

- blow-up lemma for approximate decompositions
- Szemerédi's regularity lemma
actually prove version for general bounded degree graphs of small bandwidth

The absorbing structure

The absorbing structure A : grey/black graphs between classes are quasi-random

Can show that A has an F-decomposition via a generalization of switching permutation argument described earlier (by reducing to resolvable C_{3}, C_{4} and C_{5}-decompositions)

Tool for finding resolvable decomposition

To show absorber has an F-decomposition (via switching permutation argument), we use:

Resolvable C_{ℓ}-decompositions exist in quasirandom partite graphs

Theorem (Keevash, 2018 ${ }^{+}$)

Suppose that G is a blow-up of an ℓ-cycle so that each blown-up pair is quasirandom and regular. Then G has a resolvable C_{ℓ}-decomposition.

Note this follows from: the existence of ℓ-wheel decompositions in a quasi-random blow-up of an ℓ-wheel

The absorbing structure

The absorbing structure A :

Let L be the leftover from the approximate decomposition step.
(1) Use suitable edges E of A to cover L with copies of F
(2) Then decompose $A-E$ into copies of F, (by reducing to resolvable C_{3}, C_{4}, and C_{5}-decomposition).

Recall: L is the leftover from the approximate decomposition step.
(1) Use suitable edges E of A to cover L with copies of F
(2) Then decompose $A-E$ into copies of F, (by reducing to resolvable C_{3}, C_{4}, and C_{5}-decomposition).
For (1), decompose L into small matchings M_{i} and extend each M_{i} into a copy $M_{i} \cup E_{i}$ of F using edges E_{i} of A

Recall: L is the leftover from the approximate decomposition step.
(1) Use suitable edges E of A to cover L with copies of F
(2) Then decompose $A-E$ into copies of F, (by reducing to resolvable C_{3}, C_{4}, and C_{5}-decomposition).
For (1), decompose L into small matchings M_{i} and extend each M_{i} into a copy $M_{i} \cup E_{i}$ of F using edges E_{i} of A
Challenges/Problems:

- Need to augment A by adding edges inside clusters in order to cover edges of L between clusters
- Need to do the extension in a 'globally balanced' way, i.e. $E=\cup_{i} E_{i}$ is 'balanced' with respect to A.

This ensures that $A-E$ is still F-decomposable.

- Above approach only works if there are ηn vertices of F in long cycles

Open problems and related questions

Not only 2-regular graphs?
Conjecture
Suppose $\Delta \ll n$. Let F_{1}, \ldots, F_{t} be n-vertex graphs such that F_{i} is r_{i}-regular for some $r_{i} \leq \Delta$ and $\sum_{i \in[t]} r_{i}=n-1$. Then there is a decomposition of K_{n} into F_{1}, \ldots, F_{t}.

Interesting special case

- F_{i} is a k th power of a Hamilton cycle

Open problems: Hamilton decompositions of hypergraphs

Theorem (Walecki, 1892)

Complete graph K_{n} has a Hamilton decomposition $\Leftrightarrow n$ odd
Problem: Prove a hypergraph version of Walecki's theorem.

loose Hamilton cycle open

tight Hamilton cycle open

Berge Hamilton cycle solved $(\mathrm{K}+\mathrm{O})$
approximate versions exist for the loose and tight case
(Bal, Frieze, Krivelevich, Loh) for infinitely many n

Open problems: Euler circuits

Conjecture (Chung, Diaconis and Graham, 1989 (\$100))
For sufficiently large n, K_{n}^{k} has a tight Euler tour iff $\left.k \left\lvert\, \begin{array}{c}n-1 \\ k-1\end{array}\right.\right)$.
Curtis, Hines, Hurlbert, Moyer (2009): approximate solution

Open problems: Euler circuits

Conjecture (Chung, Diaconis and Graham, 1989 (\$100))

For sufficiently large n, K_{n}^{k} has a tight Euler tour iff $k \left\lvert\,\binom{ n-1}{k-1}\right.$.
Curtis, Hines, Hurlbert, Moyer (2009): approximate solution CHHM: At the 2004 Banff Workshop ... it was suggested.. that a modest inflationary rate should revalue the prize near 250.04....

Open problems: Euler circuits

Conjecture (Chung, Diaconis and Graham, 1989

For sufficiently large n, K_{n}^{k} has a tight Euler tour iff $k \left\lvert\,\binom{ n-1}{k-1}\right.$.
Curtis, Hines, Hurlbert, Moyer (2009): approximate solution CHHM: At the 2004 Banff Workshop ... it was suggested.. that a modest inflationary rate should revalue the prize near 250.04.... Due to our proof that near-universal cycles exist, we believe that we deserve asymptotically much of the prize money, or $(1-o(1))(250.04)$. Since we do not know the speed of the o(1) term, we have made a conservative estimate of 249.99.

Open problems: Euler circuits

Conjecture (Chung, Diaconis and Graham, 1989

For sufficiently large n, K_{n}^{k} has a tight Euler tour iff $k \left\lvert\,\binom{ n-1}{k-1}\right.$.
Curtis, Hines, Hurlbert, Moyer (2009): approximate solution CHHM: At the 2004 Banff Workshop ... it was suggested.. that a modest inflationary rate should revalue the prize near 250.04.... Due to our proof that near-universal cycles exist, we believe that we deserve asymptotically much of the prize money, or $(1-o(1))(250.04)$. Since we do not know the speed of the o(1) term, we have made a conservative estimate of 249.99.

Theorem (Glock, Joos, Kühn, Osthus, 18^{+})

The conjecture is true.
based on existence of F-designs (Glock, Lo, Kühn, Osthus, 17^{+})

Open problems: Euler circuits

Theorem (Glock, Joos, Kühn, Osthus, 18^{+})
For sufficiently large n, K_{n}^{k} has a tight Euler tour if and only if $k \left\lvert\,\binom{ n-1}{k-1}\right.$.

Conjecture

Every k-graph G with $\delta_{k-1}(G) \geq(1 / 2+o(1)) n$ has a tight Euler tour if all vertex degrees are divisible by k.

Bon appetit!

