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Configurations

A symmetric configuration of triples X = (V,B) is a finite
incidence structure with |V | = v points and |B| = v blocks, such
that:

(i) each block contains exactly 3 points;
(ii) each point is contained in exactly 3 blocks; and
(iii) any pair of distinct points is contained in at most one block.

The smallest such system is on 7 points: the Steiner system
STS(7) or Fano plane PG(2, 2).

013 124 235 346 450 561 602

The dual of a configuration is formed by interchanging the roles of
points and blocks.

A symmetric configuration of triples may be viewed as a 3-regular
3-uniform hypergraph.

A blocking set in a configuration of triples is a subset of V which
intersects each block B ∈ B in 1 or 2 points.
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Associated graph

The associated graph A(X ) has vertex set the points V , with
u ∼ v iff u and v appear in some block of the configuration.

A(X ) is a 6-regular simple graph.

The neighbourhood of a vertex looks like:

The associated graph of the STS(7) is the complete graph K7.
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Levi graph

The Levi graph or incidence graph G(X ) has vertex set V ∪ B,
with v ∼ B iff v ∈ B.

The Levi graph is a cubic bipartite graph of order 2v and girth at
least 6.

In fact, symmetric configurations of triples are (up to duality) in
1-1 correspondence with cubic bipartite graphs of minimum girth 6.

The Levi graph of the STS(7) is
the Heawood graph:

4 / 11



Levi graph

The Levi graph or incidence graph G(X ) has vertex set V ∪ B,
with v ∼ B iff v ∈ B.

The Levi graph is a cubic bipartite graph of order 2v and girth at
least 6.

In fact, symmetric configurations of triples are (up to duality) in
1-1 correspondence with cubic bipartite graphs of minimum girth 6.

The Levi graph of the STS(7) is
the Heawood graph:

4 / 11



Levi graph

The Levi graph or incidence graph G(X ) has vertex set V ∪ B,
with v ∼ B iff v ∈ B.

The Levi graph is a cubic bipartite graph of order 2v and girth at
least 6.

In fact, symmetric configurations of triples are (up to duality) in
1-1 correspondence with cubic bipartite graphs of minimum girth 6.

The Levi graph of the STS(7) is
the Heawood graph:

4 / 11



Levi graph

The Levi graph or incidence graph G(X ) has vertex set V ∪ B,
with v ∼ B iff v ∈ B.

The Levi graph is a cubic bipartite graph of order 2v and girth at
least 6.

In fact, symmetric configurations of triples are (up to duality) in
1-1 correspondence with cubic bipartite graphs of minimum girth 6.

The Levi graph of the STS(7) is
the Heawood graph:

4 / 11



Upper embedding

An embedding of a configuration X = (V,B) is a cellular
embedding of the associated graph A(X ) in an orientable surface
Σ, such that every block in B bounds a face of the embedding.

These faces are block faces, and the remaining faces of the
embedding are called outer faces. If such an embedding has
exactly one outer face, then we speak about an upper embedding
and call the configuration upper embeddable.

Orientation of the
triples is important.
In principle, a
configuration may be
embeddable given one
choice of orientations,
but not another.
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Embeddability conditions

The number of points v is odd:
V − E + F = 2− 2g

v − 3v + (v + 1) = 2− 2g

Theorem (Jungerman 1978)

A configuration X admits an upper embedding in some orientation
if and only if its Levi graph G(X ) admits a spanning tree such that
each of its co-tree components has an even number of edges.

Theorem (Griggs, McCourt, Širáň 2019+)

Let X be a configuration. If its Levi graph G(X ) admits a
spanning tree such that every point vertex has even valency in the
corresponding co-tree, then X admits an upper embedding in every
orientation of triples.
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A combinatorial embeddability condition

The spanning tree criteria are impractical as a method of
determining embeddability of a given configuration.

Theorem (E., Griggs, Širáň 2019+)

Let X = (V,B) be a symmetric configuration v3
for some odd v ≥ 7, and let G be its Levi graph.
Suppose that there exists a subset S of V of size
(v − 1)/2 with the property that every block
B ∈ B contains a point of S, and the subgraph of
G induced by the points of S and all the blocks in
B is connected. Then X is upper embeddable in
every orientation.

Question: when does a dominating set S with
these properties exist?
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Let X = (V,B) be a symmetric configuration v3
for some odd v ≥ 7, and let G be its Levi graph.
Suppose that there exists a subset S of V of size
(v − 1)/2 with the property that every block
B ∈ B contains a point of S, and the subgraph of
G induced by the points of S and all the blocks in
B is connected. Then X is upper embeddable in
every orientation.

Question: when does a dominating set S with
these properties exist?

7 / 11



A combinatorial embeddability condition

The spanning tree criteria are impractical as a method of
determining embeddability of a given configuration.

Theorem (E., Griggs, Širáň 2019+)
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Results
v # configs no set
7 1 0
9 3 0
11 31 0
13 2,036 0
15 245,342 0
17 38,904,499 0
19 7,597,040,188 0
21 ??? ≥ 1

There is at least one configuration not embeddable in any
orientation for any odd v ≥ 21.

There are infinitely many configurations embeddable in every
orientation.
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A non-embeddable configuration on 21 points

H1

H2 H3
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A 3-chromatic 3-regular, 3-uniform hypergraph on 21
vertices (Bollobás/Harris 1985)
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Open questions

The Bollobás/Harris construction of 3-chromatic hypergraphs is
equivalent to blocking set-free configurations of triples. The
existence of blocking set-free configurations on 20, 23, 24 or 26
points is open. What (if anything) is the link to our embeddability
question?

Is our “cyclic stitching” construction in some sense the only thing
that can generate non-embeddable configurations?

By a result of Archdeacon et al (2004) there is always a set of
(v − 1)/2 points which dominates the blocks. Is there a simple
graph-theoretic property which would guarantee our connectedness
criterion?

We have no examples of a configuration which is embeddable in
some orientation but not all. Is this possible?
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