# Counting Elements of Thompson's Group F 

Alex Levine<br>Heriot-Watt University

26 April 2019

## Thompson's Group F

Thompson's group F was discovered in the 1960s by Richard Thompson. It has a number of interesting properties:

- It is finitely presented
- It has a simple commutator subgroup
- Every proper quotient is abelian
- It is torsion-free
- It can be viewed as equivalence classes of pairs of trees
- It can be viewed as a group of piecewise linear homeomorphisms of the unit interval


## Growth of Groups

- If $G$ is a group with a finite generating set $S$, we can look at the minimal length of a word over $S$ representing each element $g$ of $G$; called the word length of $g$.
- Define the growth function of $G$ to be the function that maps each non-negative integer $n$ to the number of elements of $G$ with word length $n$.
- The growth function of Thompson's group $F$ is known to be exponential, although the exact function is not known.


## Ordered Rooted Binary Trees

Example


## Example

A caret is the ordered rooted binary tree with two leaves:


## Tree Pairs

## Definition

A tree pair is an ordered pair $(R, S)$ of finite ordered rooted binary trees, each with the same number of leaves.

Example


## Tree Pairs

## Definition

Let $(R, S)$ be a tree pair. If we number the leaves of $R$ (resp. S) from left to right, and fix an index $i$, then an elementary expansion of $(R, S)$ (at $i$ ) is the tree pair obtained by attaching a caret to the $i$ th leaves of $R$ and $S$.

Example


## Tree Pairs

## Definition

Let $(R, S)$ be a tree pair. If we number the leaves of $R$ (resp. S) from left to right, and fix an index $i$, then an elementary expansion of $(R, S)$ (at $i$ ) is the tree pair obtained by attaching a caret to the $i$ th leaves of $R$ and $S$.

Example


## Tree Pairs

## Definition

Let $(R, S)$ be a tree pair. Number the leaves of $R$ (resp. $S$ ) from left to right, and fix an index $i$, such that the $i$ th and $(i+1)$ th leaves of both $R$ and $S$ lie in carets. An elementary contraction of $(R, S)$ (at $i$ ) is the tree pair obtained by removing the carets in the $i$ th positions of $R$ and $S$.

## Definition

We say a tree pair is reduced if it has no elementary contractions
Example


## Tree Pairs

## Definition

Let $(R, S)$ be a tree pair. Number the leaves of $R$ (resp. $S$ ) from left to right, and fix an index $i$, such that the $i$ th and $(i+1)$ th leaves of both $R$ and $S$ lie in carets. An elementary contraction of $(R, S)$ (at $i$ ) is the tree pair obtained by removing the carets in the $i$ th positions of $R$ and $S$.

## Definition

We say a tree pair is reduced if it has no elementary contractions
Example


## Tree Pairs

## Definition

We say two tree pairs are equivalent if there is a finite sequence elementary expansions and contractions from one to the other.

Lemma
Equivalence of tree pairs is an equivalence relation.
Lemma
Each equivalence class of tree pairs contains a unique reduced tree pair.

## Thompson's Group F

## Definition

If $[(R, S)]$ and $[(S, T)]$ are equivalence classes of tree pairs, we can define a binary operation on the set of all equivalence classes by $[(R, S)] \cdot[(S, T)]=[(R, T)]$.

## Lemma

The set of equivalence classes of tree pairs under the above multiplication forms a group, called Thompson's group F.

## Exponents

## Definition

Let $R$ be an ordered rooted binary tree. Let $I_{0}, \ldots, I_{n-1}$ be the leaves of $R$, in order, where $n \in \mathbb{N} \backslash\{0\}$. For each $k \in \mathbb{N} \cup\{0\}$ $k \leq n-1$, define the $k t h$ exponent of $R$ to be the length of the longest path in $R$, including $I_{k}$, which comprises entirely left edges, and never reaches a vertex in the right-side of $R$.

## Definition

The exponent list of an ordered rooted binary tree $R$ is the ordered set of exponents of $R$, under the left to right ordering.

## Exponents

## Example



The exponent list of this ordered rooted binary tree is

$$
(1,2,0,0,2,0,0,0,0)
$$

## Exponents

Theorem (L.)
Let $n \in \mathbb{N}, n \geq 2$, and $\left(a_{0}, \ldots, a_{n-1}\right)$ be a sequence of non-negative integers. Then $\left(a_{0}, \ldots, a_{n-1}\right)$ is the exponent list if and only if

$$
\begin{aligned}
& \text { 1. } a_{n-2}=a_{n-1}=0 \\
& \text { 2. } \sum_{i=k}^{n-3} a_{i} \leq(n-2)-k, \text { for all } k \in\{0, \ldots, n-3\} .
\end{aligned}
$$

In addition, ordered rooted binary trees have the same exponent list if and only if they are equal.

## Exponents

Theorem
A tree pair $(R, S)$ with exponent lists $\left(a_{0}, \ldots, a_{n-1}\right)$ and $\left(b_{0}, \ldots, b_{n-1}\right)$ is reduced if and only if:

1. If $k$ is maximal such that $a_{k}>0$, and $a_{k}<n-2-k$ or no such $k$ exists (that is $a_{i}=0$ for all $i$ ), then there exists $/$ such that $b_{l}>0$, and the maximal such $/$ satisfies $b_{l}=n-2-l$;
2. If $a_{k}, b_{k}>0$, for some $k \in\{0, \ldots, n-3\}$, then $a_{k+1}>0$ or $b_{k+1}>0$.

## Counting Trees

## Notation

Let $s(n, j)$ denote the number of ordered rooted binary trees with $n$ leaves, and whose exponent list sums to $j$.

## Lemma

Let $n \in \mathbb{N}$ be such that $n \geq 3$. Then

1. $s(n, 0)=1$;
2. $s(n, 1)=n-2$;
3. $s(n, j)=0$ for all $j>n-2$;
4. $s(n, j)=s(n-1, j)+s(n, j-1)$ for all $j \leq n-2$.

## Counting Trees

## Proof

We have that

$$
\begin{aligned}
s(n, j) & =\sum_{i=0}^{j} s(n-1, i) \\
& =s(n-1, j)+\sum_{i=0}^{j-1} s(n, i) \\
& =s(n-1, j)+s(n, j-1)
\end{aligned}
$$

## Further Questions

- What is the generating function for $s(n, j)$ ?
- What is the generating function for the number of reduced tree pairs with $n$ leaves?

冨 J. W. Cannon, W. J. Floyd, and W. R. Parry.
Introductory notes on Richard Thompson's groups.
Enseign. Math. (2), 42(3-4):215-256, 1996.

