
The Query Complexity of a
Mastermind Variant (DAM 2019)
P. Afshani, M. Agrawal,
B. Doerr, C. Doerr,
K. G. Larsen,
K. Mehlhorn

April 25, 2019

Mastermind

Secret: z ∈ [k]n

Query: x ∈ [k]n Score: | { i ; zi = xi } |

k = 6, n = 4: Knuth (77): 5 queries

Erdós/Renyi (63), Chvatal (83), Doerr/Winzen (13)

k ≤ n1−ε: Θ(n) queries
k ≥ n: Ω(n), O(n loglog n) queries

Deciding whether a history is consis-
tent is NP-complete (Stuckman/Zhang, Goodrich,

Viglietta)

Commercial board game since 70’s

Open Problem: Close the gap for k ≥ n.

Query Complexity KM 2/18

Mastermind

Secret: z ∈ [k]n

Query: x ∈ [k]n Score: | { i ; zi = xi } |

k = 6, n = 4: Knuth (77): 5 queries

Erdós/Renyi (63), Chvatal (83), Doerr/Winzen (13)

k ≤ n1−ε: Θ(n) queries
k ≥ n: Ω(n), O(n loglog n) queries

Deciding whether a history is consis-
tent is NP-complete (Stuckman/Zhang, Goodrich,

Viglietta)

Commercial board game since 70’s

Open Problem: Close the gap for k ≥ n.

Query Complexity KM 2/18

Mastermind

Secret: z ∈ [k]n

Query: x ∈ [k]n Score: | { i ; zi = xi } |

k = 6, n = 4: Knuth (77): 5 queries

Erdós/Renyi (63), Chvatal (83), Doerr/Winzen (13)

k ≤ n1−ε: Θ(n) queries
k ≥ n: Ω(n), O(n loglog n) queries

Deciding whether a history is consis-
tent is NP-complete (Stuckman/Zhang, Goodrich,

Viglietta)

Commercial board game since 70’s

Open Problem: Close the gap for k ≥ n.

Query Complexity KM 2/18

Mastermind

Secret: z ∈ [k]n

Query: x ∈ [k]n Score: | { i ; zi = xi } |

k = 6, n = 4: Knuth (77): 5 queries

Erdós/Renyi (63), Chvatal (83), Doerr/Winzen (13)

k ≤ n1−ε: Θ(n) queries
k ≥ n: Ω(n), O(n loglog n) queries

Deciding whether a history is consis-
tent is NP-complete (Stuckman/Zhang, Goodrich,

Viglietta)

Commercial board game since 70’s

Open Problem: Close the gap for k ≥ n.

Query Complexity KM 2/18

Mastermind

Secret: z ∈ [k]n

Query: x ∈ [k]n Score: | { i ; zi = xi } |

k = 6, n = 4: Knuth (77): 5 queries

Erdós/Renyi (63), Chvatal (83), Doerr/Winzen (13)

k ≤ n1−ε: Θ(n) queries
k ≥ n: Ω(n), O(n loglog n) queries

Deciding whether a history is consis-
tent is NP-complete (Stuckman/Zhang, Goodrich,

Viglietta)

Commercial board game since 70’s

Open Problem: Close the gap for k ≥ n.

Query Complexity KM 2/18

Mastermind

Secret: z ∈ [k]n

Query: x ∈ [k]n Score: | { i ; zi = xi } |

k = 6, n = 4: Knuth (77): 5 queries

Erdós/Renyi (63), Chvatal (83), Doerr/Winzen (13)

k ≤ n1−ε: Θ(n) queries
k ≥ n: Ω(n), O(n loglog n) queries

Deciding whether a history is consis-
tent is NP-complete (Stuckman/Zhang, Goodrich,

Viglietta)

Commercial board game since 70’s

Open Problem: Close the gap for k ≥ n.

Query Complexity KM 2/18

The Game Board for the New Game

Codemaker on the right, Codebreaker on the left. Codemaker
chooses a binary string of length n (= 4) and enters it into the
square on the right (one bit per row and column).

1

0

1

0

0 0

1

1

1 0

1

0

0

0

1 0

1 2 3 4

0

1

3

Positioning of the bitstring encodes a permutation.

Score = # of leading bits in which query and secret agree.

Query Complexity KM 3/18

A Mastermind Variant

Find an unknown bitstring z ∈ {0,1 }n and an unknown
permutation π by asking queries x ∈ {0,1 }n.

Answer to query x ∈ {0,1 }n is

f (x) := max
{

k ; xπ(i) = zπ(i) for i ≤ k
}
.

For example (π(1) = 2, π(2) = 3, . . .)

(z, π) = 14 01 12 03
x = 1 0 1 1

has answer 2.

How many questions are needed to unveil the secret?

How did we get interested? Model problem in evolutionary
computation. Carola and Benjamin found a randomized
O(n log n/ loglog n) algorithm.

Query Complexity KM 4/18

A Mastermind Variant

Find an unknown bitstring z ∈ {0,1 }n and an unknown
permutation π by asking queries x ∈ {0,1 }n.

Answer to query x ∈ {0,1 }n is

f (x) := max
{

k ; xπ(i) = zπ(i) for i ≤ k
}
.

For example (π(1) = 2, π(2) = 3, . . .)

(z, π) = 14 01 12 03
x = 1 0 1 1

has answer 2.

How many questions are needed to unveil the secret?

How did we get interested? Model problem in evolutionary
computation. Carola and Benjamin found a randomized
O(n log n/ loglog n) algorithm.

Query Complexity KM 4/18

Results

Information theoretic lower bound: Ω(n) queries.

Deterministic algs: Θ(n log n) queries suffice and are
needed in the worst case, O(n loglog n) queries suffice on
average.

Randomized algs: Θ(n loglog n) queries suffice in
expectation and are needed; also high probability.

The randomized lower bound uses a sophisticated potential
function argument, the randomized upper bound is by a
non-trivial algorithm.

A characterization of what is known after a sequence of
queries and answers: counting the number of secrets
consistent with a history is in P.

Query Complexity KM 5/18

Results

Information theoretic lower bound: Ω(n) queries.

Deterministic algs: Θ(n log n) queries suffice and are
needed in the worst case, O(n loglog n) queries suffice on
average.

Randomized algs: Θ(n loglog n) queries suffice in
expectation and are needed; also high probability.

The randomized lower bound uses a sophisticated potential
function argument, the randomized upper bound is by a
non-trivial algorithm.

A characterization of what is known after a sequence of
queries and answers: counting the number of secrets
consistent with a history is in P.

Query Complexity KM 5/18

Results

Information theoretic lower bound: Ω(n) queries.

Deterministic algs: Θ(n log n) queries suffice and are
needed in the worst case, O(n loglog n) queries suffice on
average.

Randomized algs: Θ(n loglog n) queries suffice in
expectation and are needed; also high probability.

The randomized lower bound uses a sophisticated potential
function argument, the randomized upper bound is by a
non-trivial algorithm.

A characterization of what is known after a sequence of
queries and answers: counting the number of secrets
consistent with a history is in P.

Query Complexity KM 5/18

Results

Information theoretic lower bound: Ω(n) queries.

Deterministic algs: Θ(n log n) queries suffice and are
needed in the worst case, O(n loglog n) queries suffice on
average.

Randomized algs: Θ(n loglog n) queries suffice in
expectation and are needed; also high probability.

The randomized lower bound uses a sophisticated potential
function argument, the randomized upper bound is by a
non-trivial algorithm.

A characterization of what is known after a sequence of
queries and answers: counting the number of secrets
consistent with a history is in P.

Query Complexity KM 5/18

Results

Information theoretic lower bound: Ω(n) queries.

Deterministic algs: Θ(n log n) queries suffice and are
needed in the worst case, O(n loglog n) queries suffice on
average.

Randomized algs: Θ(n loglog n) queries suffice in
expectation and are needed; also high probability.

The randomized lower bound uses a sophisticated potential
function argument, the randomized upper bound is by a
non-trivial algorithm.

A characterization of what is known after a sequence of
queries and answers: counting the number of secrets
consistent with a history is in P.

Query Complexity KM 5/18

Deterministic Upper Bound

Query 0n

Answer tells whether zπ(1) is 0 or 1, say 0.

Then use binary search to determine π(1):

Ask 0n/21n/2, answer reduces candidate set to first or
second half.

of queries: 1 + log n per position, n + n log n overall.

Randomized binary search: ask a random string x with
exactly n/2 0’s.

Then candidate set (= possible values for π(1)) contains
correct position and is random otherwise (useful
observation for later).

Query Complexity KM 6/18

Deterministic Upper Bound

Query 0n

Answer tells whether zπ(1) is 0 or 1, say 0.

Then use binary search to determine π(1):

Ask 0n/21n/2, answer reduces candidate set to first or
second half.

of queries: 1 + log n per position, n + n log n overall.

Randomized binary search: ask a random string x with
exactly n/2 0’s.

Then candidate set (= possible values for π(1)) contains
correct position and is random otherwise (useful
observation for later).

Query Complexity KM 6/18

Deterministic Upper Bound

Query 0n

Answer tells whether zπ(1) is 0 or 1, say 0.

Then use binary search to determine π(1):

Ask 0n/21n/2, answer reduces candidate set to first or
second half.

of queries: 1 + log n per position, n + n log n overall.

Randomized binary search: ask a random string x with
exactly n/2 0’s.

Then candidate set (= possible values for π(1)) contains
correct position and is random otherwise (useful
observation for later).

Query Complexity KM 6/18

Deterministic Lower Bound (Adversary Argument)

Theorem
For every deterministic algorithm there is an input on which the
alg needs 1

2n log n queries.

Adversary Argument
Adversary keeps track of which secrets are still consistent with
his answers.
Answers queries so that options are reduced as little as
possible.

Query Complexity KM 7/18

Deterministic Lower Bound (Adversary Argument)

Adversary works in phases of log n queries. In each phase,
the adversary commits to the next two bits and positions.

Let x∗ be the first query. Adversary gives it a score of 1
and hence commits to “zπ(1) = x∗π(1)” and “zπ(2) = 1− x∗π(2)”.

R1 = possible values for π(1),
R2 = possible values for π(2); R1 = R2 = [n] initially

Let x be the next query; let I =
{

i ; xi = x∗i
}

If adversary gives a score of 0: R1 = R1 \ I and R2 = R2
If adversary gives a score of 1: R1 = R1 ∩ I and R2 = R2 ∩ I.

Adversary chooses the answer that at most halves R1 and
hence can stick to scores 0 and 1 for the next log n queries.

After log n queries, adv. commits to π(1) and π(2) and the
bits in these locations.
Codebreaker has not learned anything about R3, R4, . . .

Query Complexity KM 8/18

Deterministic Lower Bound (Adversary Argument)

Adversary works in phases of log n queries. In each phase,
the adversary commits to the next two bits and positions.

Let x∗ be the first query. Adversary gives it a score of 1
and hence commits to “zπ(1) = x∗π(1)” and “zπ(2) = 1− x∗π(2)”.

R1 = possible values for π(1),
R2 = possible values for π(2); R1 = R2 = [n] initially

Let x be the next query; let I =
{

i ; xi = x∗i
}

If adversary gives a score of 0: R1 = R1 \ I and R2 = R2
If adversary gives a score of 1: R1 = R1 ∩ I and R2 = R2 ∩ I.

Adversary chooses the answer that at most halves R1 and
hence can stick to scores 0 and 1 for the next log n queries.

After log n queries, adv. commits to π(1) and π(2) and the
bits in these locations.
Codebreaker has not learned anything about R3, R4, . . .

Query Complexity KM 8/18

Deterministic Lower Bound (Adversary Argument)

Adversary works in phases of log n queries. In each phase,
the adversary commits to the next two bits and positions.

Let x∗ be the first query. Adversary gives it a score of 1
and hence commits to “zπ(1) = x∗π(1)” and “zπ(2) = 1− x∗π(2)”.

R1 = possible values for π(1),
R2 = possible values for π(2); R1 = R2 = [n] initially

Let x be the next query; let I =
{

i ; xi = x∗i
}

If adversary gives a score of 0: R1 = R1 \ I and R2 = R2
If adversary gives a score of 1: R1 = R1 ∩ I and R2 = R2 ∩ I.

Adversary chooses the answer that at most halves R1 and
hence can stick to scores 0 and 1 for the next log n queries.

After log n queries, adv. commits to π(1) and π(2) and the
bits in these locations.
Codebreaker has not learned anything about R3, R4, . . .

Query Complexity KM 8/18

Doerr/Doerr (2011): An O(n log n/ loglog n) Rand. Alg.

The algorithm alternates between exploration phases and
consolidation phases.

In exploration phases, it increases the score by k0 =
√

log n.

In consolidation phases, it determines where these k0 bits are
positioned.

A phase requires k0 · log n/ loglog n queries.

total # of queries =
n
k0
· k0 log n

loglog n
=

n log n
loglog n

.

Query Complexity KM 9/18

Doerr/Doerr (2011): An O(n log n/ loglog n) Rand. Alg.

Let (z, π) be the secret.

Alg: Part I (Explore and Increase Score)
Find an x∗ with f (x∗) = 0, 0n or 1n will do
Repeat until f (x∗) ≥ k0 =

√
log n

Obtain y from x∗ by flipping bits with probability p = 1/k0
If f (y) > f (x∗) then x∗ ← y

Now x∗π(i) = zπ(i) for i ≤ k0

Query Complexity KM 10/18

Doerr/Doerr (2011): An O(n log n/ loglog n) Rand. Alg.

Alg: Part I (Explore and Increase Score)
Find an x∗ with f (x∗) = 0, 0n or 1n will do
Repeat until f (x∗) ≥ k0 =

√
log n

Obtain y from x∗ by flipping bits with probability p = 1/k0
If f (y) > f (x∗) then x∗ ← y

Analysis
Assume f (x∗) = k ∈ [0, k0]. Then prob(f (y) > f (x∗)) =

prob(x∗π(1), . . . , x
∗
π(k) are not flipped, but x∗π(k+1) is) = (1− p)k · p

= (1− 1
k0

)k · p ≥ p/e

We reach a score of k0 =
√

log n in k0 · 1
p = k2

0 = log n steps.

Query Complexity KM 10/18

Doerr/Doerr (2011): An O(n log n/ loglog n) Rand. Alg.

Alg: Part I (Explore and Increase Score)
Find an x∗ with f (x∗) = 0, 0n or 1n will do
Repeat until f (x∗) ≥ k0 =

√
log n

Obtain y from x∗ by flipping bits with probability p = 1/k0
If f (y) > f (x∗) then x∗ ← y

Alg: Part II (Consolidate)
R1 = R2 = . . . = Rk0 = [1,n] recall x∗π(i) = zπ(i) for i ≤ k0

Repeat c · k0 · log n/loglog n times

Obtain y from x∗ by flipping bits with probability p = 1/k0.
Let F be the bits flipped.
If f (y) = ` < f (x∗) then R`+1 ← R`+1 ∩ F also, Rj ← Rj \ F for j ≤ `

Claim: R1 to Rk0 are now singletons with high probability,
i.e., Ri = {π(i) }. If some Ri is not a singleton, switch to deterministic alg.

Query Complexity KM 10/18

Doerr/Doerr (2011): An O(n log n/ loglog n) Rand. Alg.

Alg: Part II (Consolidate)
R1 = R2 = . . . = Rk0 = [1,n] recall x∗π(i) = zπ(i) for i ≤ k0

Repeat c · k0 · log n/loglog n times

Obtain y from x∗ by flipping bits with probability p = 1/k0.
Let F be the bits flipped.
If f (y) = ` < f (x∗) then R`+1 ← R`+1 ∩ F also, Rj ← Rj \ F for j ≤ `

Analysis
For each `: f (y) = ` occurs Ω(log n/ loglog n) times, since

prob(f (y) = `) ≥ p/e.

Whenever f (y) = `: only j for which x∗j is flipped stay in R`+1
and hence |R`+1| → |R`+1|/k0

After Ω(log n/ loglog n) iterations, |R`+1| = 1.

Query Complexity KM 10/18

Doerr and Doerr (2011): O(n log n/ loglog n) RA

The Complete Algorithm
Algorithm alternates between explore and consolidate.
Explore: Increases f (x∗) by k0 =

√
log n at cost k0

√
log n.

Consolidate: Determines correspondings π(i)’s at cost
k0 log n/ loglog n.
Thus: log n/ loglog n queries per position.

Main Idea for Improvement to O(n loglog n)
Intertwine the various phases.
On average: One candidate block is reduced to the root of
its size per query.
s → s1/2 costs one query, n→ n1/2d

costs d queries.
n1/2d

= 1 iff 1
2d log n = 1 iff 2d = log n iff d = loglog n.

Query Complexity KM 11/18

Doerr and Doerr (2011): O(n log n/ loglog n) RA

The Complete Algorithm
Algorithm alternates between explore and consolidate.
Explore: Increases f (x∗) by k0 =

√
log n at cost k0

√
log n.

Consolidate: Determines correspondings π(i)’s at cost
k0 log n/ loglog n.
Thus: log n/ loglog n queries per position.

Main Idea for Improvement to O(n loglog n)
Intertwine the various phases.
On average: One candidate block is reduced to the root of
its size per query.
s → s1/2 costs one query, n→ n1/2d

costs d queries.
n1/2d

= 1 iff 1
2d log n = 1 iff 2d = log n iff d = loglog n.

Query Complexity KM 11/18

Randomized Algorithms, a Closer Look

Deterministic algorithms can be viewed as trees with branching
factor n + 1. Each node has as associated query and
alg. branches on the score.

Randomized algorithms can also be considered as trees. Each
node has as an associated probability distribution over the
possible 2n queries. Query is chosen according to this
distribution, e.g., by choosing a random number in [0,1].

We may choose all random numbers upfront:

RA + particular choice of random numbers = deterministic alg.

So RA is a probability distribution over deterministic algorithms.

Query Complexity KM 12/18

Randomized Algorithms, a Closer Look

Deterministic algorithms can be viewed as trees with branching
factor n + 1. Each node has as associated query and
alg. branches on the score.

Randomized algorithms can also be considered as trees. Each
node has as an associated probability distribution over the
possible 2n queries. Query is chosen according to this
distribution, e.g., by choosing a random number in [0,1].

We may choose all random numbers upfront:

RA + particular choice of random numbers = deterministic alg.

So RA is a probability distribution over deterministic algorithms.

Query Complexity KM 12/18

Randomized Algorithms, a Closer Look

Deterministic algorithms can be viewed as trees with branching
factor n + 1. Each node has as associated query and
alg. branches on the score.

Randomized algorithms can also be considered as trees. Each
node has as an associated probability distribution over the
possible 2n queries. Query is chosen according to this
distribution, e.g., by choosing a random number in [0,1].

We may choose all random numbers upfront:

RA + particular choice of random numbers = deterministic alg.

So RA is a probability distribution over deterministic algorithms.

Query Complexity KM 12/18

Randomized Lower Bound: Yao’s Principle

Define a probability distribution D on inputs and show: Every
deterministic alg has average query complexity Ω(n loglog n) for
this distribution.

A randomized algorithm is a probability distribution on
deterministic algs, say RA is Ai with probability pi . Then
CostRA(x) =

∑
i pi · Costi(x) and hence

max
x

CostRA(x) ≥ Ex∼D[CostRA(x)]

= Ex∼D[
∑

i

pi · Costi(x)]

=
∑

i

pi · Ex∼D[Costi(x)]

≥
∑

i

pi · Ω(n loglog n)

= Ω(n loglog n).

Query Complexity KM 13/18

Randomized Lower Bound: Warm-Up

Given A[1..n] and a value x , determine i such that A[i] = x .

Randomization, powerful queries: Is i ∈ Q, where Q ⊆ [n].

Input distribution: prob(x = A[i]) = 1/n for all i ∈ [n].

For a node v : Let Cv be the candidates at v and
Φ(v) = log n/|Cv |.
Φ(root) = 0, Φ(any leaf) = log n, expected gain in potential
per query at most one⇒ expected depth of tree is log n.
Expected gain: Let w0 and w1 be the children of v and let
Qv be the query at v . Then Cw0 = Cv ∩Qv and

Cw1 = Cv \Qv and ε0 = prob(v → w0) =
|Cw0 |
|Cv | . Therefore

ε0Φ(w0) + (1− ε0)Φ(w1)− Φ(v)

= ε0 log
n

ε0|Cv |
+ (1− ε0) log

n
(1− ε0)|Cv |

− log
n
|Cv |

= ε0 log
1
ε0

+ (1− ε0) log
1

1− ε1
≤ 1.

Query Complexity KM 14/18

Randomized Lower Bound: A Potential Function
Argument

Distribution on secrets (π, z): π is a random permutation
and z is 0 in even positions according to π, 1 in odd.

0

1 2 3 4

0

1

1

For any node v of the decision tree:
Rv

i = { values still possible for π(i) }.
Rroot

i = [n] and R leaf
i = 1 for all i .

Potential function: Φ(v) = . . .+
∑

j loglog 2n
|Rv

j |
;

inspired by the upper bound.
Potential is zero for the root, n loglog n for leaves, and
expected increase of potential per query is constant.
Therefore, average depth of decision tree is Ω(n loglog n).

Ω(n loglog n) =
∑
leaf `

p(`)Φ(`)− Φ(root)

=
∑
leaf `

p(`)Φ(`)− Φ(root)±
∑

non-leaf, non-root v

p(v)Φ(v)

=
∑

non-leaf v

p(v) ·

(∑
child w of v

prob(v → w)Φ(w)− Φ(v)

)
≤

∑
non-leaf v

p(v) ·O(1)

= O(1)
∑
leaf `

p(`) · depth(`).

Query Complexity KM 15/18

Randomized Lower Bound: A Potential Function
Argument

Distribution on secrets (π, z): π is a random permutation
and z is 0 in even positions according to π, 1 in odd.

0

1 2 3 4

0

1

1

For any node v of the decision tree:
Rv

i = { values still possible for π(i) }.
Rroot

i = [n] and R leaf
i = 1 for all i .

Potential function: Φ(v) = . . .+
∑

j loglog 2n
|Rv

j |
;

inspired by the upper bound.
Potential is zero for the root, n loglog n for leaves, and
expected increase of potential per query is constant.
Therefore, average depth of decision tree is Ω(n loglog n).

Ω(n loglog n) =
∑
leaf `

p(`)Φ(`)− Φ(root)

=
∑
leaf `

p(`)Φ(`)− Φ(root)±
∑

non-leaf, non-root v

p(v)Φ(v)

=
∑

non-leaf v

p(v) ·

(∑
child w of v

prob(v → w)Φ(w)− Φ(v)

)
≤

∑
non-leaf v

p(v) ·O(1)

= O(1)
∑
leaf `

p(`) · depth(`).

Query Complexity KM 15/18

Randomized Lower Bound: A Potential Function
Argument

Distribution on secrets (π, z): π is a random permutation
and z is 0 in even positions according to π, 1 in odd.

0

1 2 3 4

0

1

1

For any node v of the decision tree:
Rv

i = { values still possible for π(i) }.
Rroot

i = [n] and R leaf
i = 1 for all i .

Potential function: Φ(v) = . . .+
∑

j loglog 2n
|Rv

j |
;

inspired by the upper bound.
Potential is zero for the root, n loglog n for leaves, and
expected increase of potential per query is constant.
Therefore, average depth of decision tree is Ω(n loglog n).

Ω(n loglog n) =
∑
leaf `

p(`)Φ(`)− Φ(root)

=
∑
leaf `

p(`)Φ(`)− Φ(root)±
∑

non-leaf, non-root v

p(v)Φ(v)

=
∑

non-leaf v

p(v) ·

(∑
child w of v

prob(v → w)Φ(w)− Φ(v)

)
≤

∑
non-leaf v

p(v) ·O(1)

= O(1)
∑
leaf `

p(`) · depth(`).

Query Complexity KM 15/18

Randomized Lower Bound: A Potential Function
Argument

Potential is zero for the root, n loglog n for leaves, and
expected increase of potential per query is constant.
Therefore, average depth of decision tree is Ω(n loglog n).

Ω(n loglog n) =
∑
leaf `

p(`)Φ(`)− Φ(root)

=
∑
leaf `

p(`)Φ(`)− Φ(root)±
∑

non-leaf, non-root v

p(v)Φ(v)

=
∑

non-leaf v

p(v) ·

(∑
child w of v

prob(v → w)Φ(w)− Φ(v)

)
≤

∑
non-leaf v

p(v) ·O(1)

= O(1)
∑
leaf `

p(`) · depth(`).

Query Complexity KM 15/18

Information Gain by a Query

For any node v : Rv
i = values still possible for π(i) in v .

Rroot
i = [n] for all i .

It is easy to keep track of the sets Rv
i and the probability of

having a particular score, for example for v = root we have:

Assume we query 0110 in the root.
score = 0, R1 ← { 1, 4 }, prob() = 1/2.
score = 1, R1 ← { 2, 3 }, R2 ← { 2, 3 }, prob() = 4/24.
score = 2, R1 ← { 2, 3 }, R2 ← R3 ← { 1, 4 }, prob() = 4/24.
score = 3, impossible.
score = 4, R1 ← R3 ← { 2, 3 }, R2 ← R4 ← { 1, 4 }, prob() = 4/24.

Generally, we have essentially. Let wj be the child for score j
and let εj = prob(v → wj). Then

|Rwj
j+1| ≈ εj |Rv

j+1|.

if εj > 0, then εj ≥ 1/n.

Query Complexity KM 16/18

Information Gain by a Query

For any node v : Rv
i = values still possible for π(i) in v .

Rroot
i = [n] for all i .

It is easy to keep track of the sets Rv
i and the probability of

having a particular score, for example for v = root we have:

Assume we query 0110 in the root.
score = 0, R1 ← { 1, 4 }, prob() = 1/2.
score = 1, R1 ← { 2, 3 }, R2 ← { 2, 3 }, prob() = 4/24.
score = 2, R1 ← { 2, 3 }, R2 ← R3 ← { 1, 4 }, prob() = 4/24.
score = 3, impossible.
score = 4, R1 ← R3 ← { 2, 3 }, R2 ← R4 ← { 1, 4 }, prob() = 4/24.

Generally, we have essentially. Let wj be the child for score j
and let εj = prob(v → wj). Then

|Rwj
j+1| ≈ εj |Rv

j+1|.

if εj > 0, then εj ≥ 1/n.

Query Complexity KM 16/18

Increase of Potential

Assume we are in node v and see a score j with probability εj .
Then expected increase in potential:

∆ :=
∑

j

εj(Φ(wj)− Φ(v)).

If we proceed to child wj the size of Rj+1 is multiplied by εj
(ignore effect on other sets). Thus

∆ =
∑

j

εj log

(
log(2n/(εj |Rv

j+1|))

log(2n/|Rv
j+1|)

)
=
∑

j

εj log

(
1 +

log 1/εj

log(2n/|Rv
j+1|)

)

≤
∑

j

εj
log(1/εj)

log(2n/|Rv
j+1|)

≤
∑

j

1
n

log n
log(2n/|Rv

j+1|)

≤ O

(
log n−1∑

i=0

log n
2i log(2n/2i)

)
= O(1).

epsilon

epsilon ln (1/ epsilon)

at most n/2i

indices j with
|Rj | ≈ 2i

Query Complexity KM 17/18

Summary and Open Problems

Information theoretic lower bound: Ω(n) queries.

Deterministic algs: Θ(n log n) questions suffice and are
needed. On average (random secret) O(n loglog n questions
suffice.

Randomized algs: Θ(n loglog n) questions suffice in
expectation and are needed.

Open problems:
Average case complexity of deterministic alg: Explicite
construction.
Lower bound for standard Mastermind with n positions and n
colors (best upper bound is O(n log log n), best lower bound
is Ω(n)).
This problem for larger alphabet sizes: Θ(n(k + log n)) for
det. algs.
Applications of the problem: Some applications of
Mastermind to computer privacy were found recently.

Query Complexity KM 18/18

Summary and Open Problems

Information theoretic lower bound: Ω(n) queries.

Deterministic algs: Θ(n log n) questions suffice and are
needed. On average (random secret) O(n loglog n questions
suffice.

Randomized algs: Θ(n loglog n) questions suffice in
expectation and are needed.

Open problems:
Average case complexity of deterministic alg: Explicite
construction.
Lower bound for standard Mastermind with n positions and n
colors (best upper bound is O(n log log n), best lower bound
is Ω(n)).
This problem for larger alphabet sizes: Θ(n(k + log n)) for
det. algs.
Applications of the problem: Some applications of
Mastermind to computer privacy were found recently.

Query Complexity KM 18/18

	Problem Statement
	Results
	Deterministic Alg
	Randomized Alg
	Randomized Lower Bound
	Summary

