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Mastermind

Secret: z € [K]"
Query: x € [k]" Score: |{i;zi=x; }|
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Mastermind

Secret: z € [K]"

Query: x € [k]" Score: |{i;zi=x; }|
k =6, n = 4: Knuth (77): 5 queries
Erdos/Renyi (63), Chvatal (83), Doerrinzen (13)

k < n'~¢: ©(n) queries
k>n: Q(n), O(nloglog n) queries

Deciding whether a history is consis-
tent is NF’-Complete (Stuckman/Zhang, Goodrich,
Vigliena)

Commercial board game since 70’s

Open Problem: Close the gap for k > n.
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The Game Board for the New Game

Codemaker on the right, Codebreaker on the left. Codemaker
chooses a binary string of length n (= 4) and enters it into the
square on the right (one bit per row and column).

1 2 3 4
0110 0
1{1]0 0
0|11 1
0101 0
1 0 3

Positioning of the bitstring encodes a permutation.

Score = # of leading bits in which query and secret agree.
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A Mastermind Variant

= Find an unknown bitstring z € { 0,1 }"" and an unknown
permutation 7 by asking queries x € { 0,1 }".

= Answer to query x € {0,1}"is
f(X)—max{k (i) = W(,)for/<k}

For example (7(1) =2, 7(2) =3, ...)

(z,m)= 14 0y 12 O3
x=1 0 1 1

* How many questions are needed to unveil the secret?

has answer 2.
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A Mastermind Variant

= Find an unknown bitstring z € { 0,1 }"" and an unknown
permutation 7 by asking queries x € { 0,1 }".

= Answer to query x € {0,1}"is
f(X)—max{k (i) = 7r(,)fOf’I<k}

For example (7(1) =2, 7(2) =3, ...)

(z,m)= 14 0y 12 O3
x=1 0 1 1

* How many questions are needed to unveil the secret?

has answer 2.

= How did we get interested? Model problem in evolutionary
computation. Carola and Benjamin found a randomized
O(nlog n/ loglog n) algorithm.
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Results

= Information theoretic lower bound: Q(n) queries.
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function argument, the randomized upper bound is by a
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Results

= Information theoretic lower bound: Q(n) queries.

= Deterministic algs: ©(nlog n) queries suffice and are
needed in the worst case, O(nloglog n) queries suffice on
average.

» Randomized algs: ©(nloglog n) queries suffice in
expectation and are needed,; also high probability.

= The randomized lower bound uses a sophisticated potential
function argument, the randomized upper bound is by a
non-trivial algorithm.

= A characterization of what is known after a sequence of
queries and answers: counting the number of secrets
consistent with a history is in P.
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Deterministic Upper Bound

= Query 0"
= Answer tells whether z,(4y is 0 or 1, say 0.
= Then use binary search to determine =(1):

= Ask 07/217/2 answer reduces candidate set to first or
second half.
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Deterministic Upper Bound

= Query 0"
= Answer tells whether z,(4y is 0 or 1, say 0.
= Then use binary search to determine =(1):

= Ask 07/217/2 answer reduces candidate set to first or
second half.

» # of queries: 1 + log n per position, n+ nlog n overall.

» Randomized binary search: ask a random string x with
exactly n/2 0’s.

= Then candidate set (= possible values for 7(1)) contains
correct position and is random otherwise (useful
observation for later).
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Deterministic Lower Bound (Adversary Argument)

Theorem
For every deterministic algorithm there is an input on which the
alg needs }nlog n queries.

| \

Adversary Argument

Adversary keeps track of which secrets are still consistent with
his answers.

Answers queries so that options are reduced as little as
possible.
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Deterministic Lower Bound (Adversary Argument)

= Adversary works in phases of log n queries. In each phase,
the adversary commits to the next two bits and positions.

» Let x* be the first query. Adversary gives it a score of 1
and hence commits to “z; (1) = x;m” and “zy) =1 - x;(z)”.
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Deterministic Lower Bound (Adversary Argument)

= Adversary works in phases of log n queries. In each phase,
the adversary commits to the next two bits and positions.

Let x* be the first query. Adversary gives it a score of 1
and hence commits t0 “Z(1) = X7 4y and “zz2) = 1 — X7 5"

* Ry = possible values for (1),
R> = possible values for 7(2); Ry = R> = [n] initially

Let x be the next query; let I = { i; x; = x7 }
= |If adversary gives a score of 0: Ry = Ry \ /and R = R
= |f adversary gives ascoreof 1: Ry =Rin/land Ro = RN I.

= Adversary chooses the answer that at most halves Ry and
hence can stick to scores 0 and 1 for the next log n queries.
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Deterministic Lower Bound (Adversary Argument)

= Adversary works in phases of log n queries. In each phase,
the adversary commits to the next two bits and positions.

Let x* be the first query. Adversary gives it a score of 1
and hence commits t0 “Z(1) = X7 4y and “zz2) = 1 — X7 5"

* Ry = possible values for (1),
R> = possible values for 7(2); Ry = R> = [n] initially

Let x be the next query; let I = { i; x; = x7 }
= |If adversary gives a score of 0: Ry = Ry \ /and R = R
= |f adversary gives ascoreof 1: Ry =Rin/land Ro = RN I.

= Adversary chooses the answer that at most halves Ry and
hence can stick to scores 0 and 1 for the next log n queries.

= After log n queries, adv. commits to 7(1) and 7(2) and the
bits in these locations.
Codebreaker has not learned anything about Rs, Rq, ...
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Doerr/Doerr (2011): An O(nlog n/ loglog n) Rand. Alg.

The algorithm alternates between exploration phases and
consolidation phases.

In exploration phases, it increases the score by kg = +/log n.

In consolidation phases, it determines where these kj bits are
positioned.

A phase requires Ky - log n/ loglog n queries.

. n kylogn nlogn
total # of queries = — . 0 %81 _ 11081
Ky loglogn loglogn
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Doerr/Doerr (2011): An O(nlog n/ loglog n) Rand. Alg.

Let (z, 7) be the secret.

Alg: Part | (Explore and Increase Score)
= Find an x* with f(x*) =0, 0" or 1" will do
= Repeat until f(x*) > ko = +/logn

= Obtain y from x* by flipping bits with probability p = 1/kg
= If f(y) > f(x*) then x* < y

* Now X:(i) = Zx(i) for i < ko
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Doerr/Doerr (2011): An O(nlog n/ loglog n) Rand. Alg.

Alg: Part | (Explore and Increase Score)
= Find an x* with f(x*) =0, 0" or 1" will do
= Repeat until f(x*) > ko = /logn

= Obtain y from x* by flipping bits with probability p = 1/ko
= If f(y) > f(x*) then x* < y

| \

Analysis
Assume f(x*) = k € [0, ko]. Then prob(f(y) > f(x*)) =

Prob(x7 1y, - - - Xz (k) are not flipped, but x7 . 1y is) = (1 — p)k-p

1
:(1—k—0)k-p2p/e

We reach a score of kg = /lognin kg - ,1) = k& = log n steps.

V.
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Doerr/Doerr (2011): An O(nlog n/ loglog n) Rand. Alg.

Alg: Part | (Explore and Increase Score)
= Find an x* with f(x*) =0, 0" or 1" will do
= Repeat until f(x*) > ko = /logn

= Obtain y from x* by flipping bits with probability p = 1/ko
= If f(y) > f(x*) then x* < y

\,

Alg: Part Il (Consolidate)
*Ri=Ro=...=Ry,=[1,n] recall x;(,.) = Zy(j) for i < ko

* Repeat ¢ - ky - log n/loglog n times
= Obtain y from x* by flipping bits with probability p = 1/kp.
Let F be the bits flipped.
= |f f(y) =I/< f(X*) then Ry, 1 + RZ—H NnF also, Rj < Rj\ Fforj < ¢
= Claim: Ry to Ry, are now singletons with high probability,

[EE R; = { 7T(/) } If some R; is not a singleton, switch to deterministic alg.

\
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Doerr/Doerr (2011): An O(nlog n/ loglog n) Rand. Alg.

Alg: Part Il (Consolidate)

"R =R=...= Ry, =[1,n] recall x;(i) = Zy(j) fori < ko

= Repeat ¢ - kg - log n/loglog n times

= Obtain y from x* by flipping bits with probability p = 1/kp.
Let F be the bits flipped.

= If f(y) =€ < f(x*) then Ryy1 < Rip1 N F also R« Aj\ Florj < ¢

Analysis

For each ¢: f(y) = ¢ occurs Q(log n/ loglog n) times, since
prob(f(y) = £) > p/e.

Whenever f(y) = ¢: only j for which Xj" is flipped stay in R+
and hence |Ry1| — |Ret1]/ko

After Q(log n/ loglog n) iterations, |Ry;1| = 1.

\
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Doerr and Doerr (2011): O(nlog n/loglog n) RA

The Complete Algorithm

Algorithm alternates between explore and consolidate.
Explore: Increases f(x*) by kg = /log n at cost ky+/log n.
Consolidate: Determines correspondings = (i)’s at cost
ko log n/ loglog n.

Thus: log n/ loglog n queries per position.
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Doerr and Doerr (2011): O(nlog n/loglog n) RA

The Complete Algorithm

Algorithm alternates between explore and consolidate.
Explore: Increases f(x*) by kg = /log n at cost ky+/log n.
Consolidate: Determines correspondings = (i)’s at cost
ko log n/ loglog n.

Thus: log n/ loglog n queries per position.

Main Idea for Improvement to O(nloglog n)
* Intertwine the various phases.
= On average: One candidate block is reduced to the root of
its size per query.
- s — s'/2 costs one query, n — n'/2 costs d queries.
= n'/2* = 1 iff Llogn=1iff 2¢ = log niff d = loglog n.

\
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Randomized Algorithms, a Closer Look

Deterministic algorithms can be viewed as trees with branching
factor n+ 1. Each node has as associated query and
alg. branches on the score.
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node has as an associated probability distribution over the
possible 2" queries. Query is chosen according to this
distribution, e.g., by choosing a random number in [0, 1].
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Randomized Algorithms, a Closer Look

Deterministic algorithms can be viewed as trees with branching
factor n+ 1. Each node has as associated query and
alg. branches on the score.

Randomized algorithms can also be considered as trees. Each
node has as an associated probability distribution over the
possible 2" queries. Query is chosen according to this
distribution, e.g., by choosing a random number in [0, 1].

We may choose all random numbers upfront:

RA + particular choice of random numbers = deterministic alg.

So RA is a probability distribution over deterministic algorithms.
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Randomized Lower Bound: Yao’s Principle

Define a probability distribution D on inputs and show: Every
deterministic alg has average query complexity Q(nloglog n) for
this distribution.

A randomized algorithm is a probability distribution on
deterministic algs, say RA is A; with probability p;. Then
Costra(x) = >, pi - Cost;(x) and hence

max Costra(X) > Exp[Costra(X)]

- EXND[Z pi - Costi(x)]
— Zpl . EXND[COSti(X)]

> " pi- Q(nloglog n)
i

= Q(nloglog n).

Query Complexity KM 13/18
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Randomized Lower Bound: Warm-Up

= Given A[1..n] and a value x, determine i such that A[/] = x.
= Randomization, powerful queries: Is i € Q, where Q C [n].
= |Input distribution: prob(x = A[i]) = 1/nfor all i € [n].
= For a node v: Let C, be the candidates at v and
o(v) = log n/|Cyl.
» ®(root) = 0, d(any leaf) = log n, expected gain in potential
per query at most one = expected depth of tree is log n.

= Expected gain: Let wy and wy be the children of v and let
Qy be the query at v. Then Cy, = C, N Q, and

Cw, = Cy \ Qv and ¢y = prob(v — wp) = ||CCWV°‘|. Therefore

€0¢(Wo) + (1 - 60)¢(W1) - ¢7(V)

= ¢golog + (1 —eo)log

N g N
(1 -20)Cv| G/l

_n_
EO|Cv|

1 1
=¢eglog — + (1 — &) log <1.
€0 1—61
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Randomized Lower Bound: A Potential Function
Argument

Distribution on secrets (7, z): 7 is a random permutation 0
and z is 0 in even positions according to 7, 1 in odd. i

= For any node v of the decision tree:
= { values still possible for (/) }.

= R°°! = [n] and A3 = 1 for all /.

nck institut
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Randomized Lower Bound: A Potential Function
Argument

o

Distribution on secrets (7, z): 7 is a random permutation
and z is 0 in even positions according to 7, 1 in odd. i

= For any node v of the decision tree:
= { values still possible for (/) }.

= R°°! = [n] and A3 = 1 for all /.
= Potential function: ®(v) = ... +";loglog &7;
i
inspired by the upper bound.
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Randomized Lower Bound: A Potential Function
Argument

o

Distribution on secrets (7, z): 7 is a random permutation
and z is 0 in even positions according to 7, 1 in odd. i

= For any node v of the decision tree:
= { values still possible for (/) }.

= R°°! = [n] and A3 = 1 for all /.
= Potential function: ®(v) = ...+ 3, loglog &7
i

inspired by the upper bound.

= Potential is zero for the root, nloglog n for leaves, and
expected increase of potential per query is constant.
Therefore, average depth of decision tree is Q(nloglog n).
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Randomized Lower Bound: A Potential Function
Argument

» Potential is zero for the root, nloglog n for leaves, and
expected increase of potential per query is constant.
Therefore, average depth of decision tree is Q(nloglog n).

Q(nloglog n) = > _ p(£)®(£) — d(root)

leaf ¢

=" p)d()) —d(root) £ S p(v)d(v)

leaf £ non-leaf, non-root v

> pv)- ( > prob(v — w)d(w) — d>(v))
non-leaf v child w of v

> p(v)-0(1)

non-leaf v

= 0(1) > _ p(¢) - depth(e).

leaf ¢
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Information Gain by a Query

= For any node v: R/ = values still possible for 7 (/) in v.
= R = [n] for all i.

= It is easy to keep track of the sets R} and the probability of
having a particular score, for example for v = root we have:

Assume we query 0110 in the root.

score =0, Ry + { 1,4}, prob() = 1/2.

score =1, Ry «+ {2,3}, R. < {2,3}, prob() = 4/24.

score =2, Ry «+ {2,383}, Ro + Rs + { 1,4}, prob() = 4/24.
score = 3, impossible.

= score =4, Ry < R3 <+ {2,3}, Ro <~ Ry < { 1,4}, prob() = 4/24.
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Information Gain by a Query

= For any node v: R/ = values still possible for 7 (/) in v.
= R = [n] for all i.

= It is easy to keep track of the sets R} and the probability of
having a particular score, for example for v = root we have:

Assume we query 0110 in the root.

score =0, Ry + { 1,4}, prob() = 1/2.

score =1, Ry «+ {2,3}, R. < {2,3}, prob() = 4/24.

score =2, Ry «+ {2,383}, Ro + Rs + { 1,4}, prob() = 4/24.
score = 3, impossible.

= score =4, Ry < R3 <+ {2,3}, Ro <~ Ry < { 1,4}, prob() = 4/24.

= Generally, we have essentially. Let w; be the child for score j
and let ; = prob(v — w;). Then

.
“ IR~ glRA.

= if¢ > 0,thene >1/n.
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Increase of Potential

Assume we are in node v and see a score j with probability ¢;.

Then expected increase in potential:

Zsj(cb W,
i

A=

If we proceed to child w; the size of R, ¢ is multiplied by ¢;

(ignore effect on other sets). Thus

_ log(2n/(e;| R, 4|
A= ZE/ log < |Og7(2n/‘ /+1

log(1/¢;)

log n—1
<O<Z o

lllpll"“‘

log n
log(2n

) o

1
_Z llog (@2n/|RY41) Sz:r7|og(2n/| RYAl1)

|og1/£/
log(2n/|RY,41)

epsilon In 1/ epsilon)

= 0(1).

YEi )> (1) |
at most n/2
indices j with
|Rj| ~ 2
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Summary and Open Problems

* Information theoretic lower bound: Q(n) queries.

» Deterministic algs: ©(nlog n) questions suffice and are
needed. On average (random secret) O(nloglog n questions
suffice.

* Randomized algs: ©(nloglog n) questions suffice in
expectation and are needed.
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Summary and Open Problems

* Information theoretic lower bound: Q(n) queries.

» Deterministic algs: ©(nlog n) questions suffice and are
needed. On average (random secret) O(nloglog n questions
suffice.

* Randomized algs: ©(nloglog n) questions suffice in
expectation and are needed.

= Open problems:

= Average case complexity of deterministic alg: Explicite
construction.

= Lower bound for standard Mastermind with n positions and n
colors (best upper bound is O(nlog log n), best lower bound
is Q(n)).

= This problem for larger alphabet sizes: ©(n(k + log n)) for
det. algs.

= Applications of the problem: Some applications of
Mastermind to computer privacy were found recently.
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