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Nik Ruškuc (with Matt McDevitt)

School of Mathematics and Statistics, University of St Andrews

Scottish Combinatorics Meeting, ICM 26 April 2019



Introduction: well ordering for posets

I Well order: a totally ordered set with no infinite descending
chains – well ordering principle, ordinals,. . .

I Partial well order: no infinite descending chains and no infinite
antichains.

I Alternative term: well quasi order – WQO for short.

I Cherlin (2011): ‘tame’ (WQO) vs ‘wild’ (non-WQO).
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Substructure orderings in combinatorics

I WQO in combinatorics usually arises in connection with
substructure orderings (subgraph, induced subgraph,
subpermutation, etc.)

I Automatically no infinite descending antichains (size).

I WQO = no infinite antichains.
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Famous example: graph minors

Theorem (Robertson, Seymour)

The set of all finite graphs under the minor ordering is WQO.

However, under subgraph ordering and induced subgraph ordering
there are antichains; e.g.: cycles Cn, n = 3, 4, . . . .

, , , . . .
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WQO problem

Informally: If the entire class is not WQO, can it be algorithmically
decided which downward closed subclasses are WQO?

Problem
Given a class C of combinatorial objects and a partial ordering on C
is the following algorithmic problem decidable?

I INPUT: A finite collection S1, . . . ,Sm of structures from C,
which define a downward closed class

D = Av(S1, . . . ,Sm) = {S ∈ C : Si � S for all i = 1, . . . ,m}.

I OUTPUT: YES if D is WQO, NO if D is not WQO.
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Example: subgraph ordering

Theorem (Ding 1992)

A downward closed set of graphs under the subgraph relation is
WQO iff it contains only finitely many cycles and double-ended
forks.

Corollary

The WQO problem is decidable for graphs under the subgraph
relation.

HOWEVER: the problem is OPEN for the induced subgraph
relation (Lozin et al.), digraphs, tournaments (Cherlin & Latka),
. . .
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Words: subword ordering

A – a finite alphabet; A∗ – all words over A.
(Scattered) subword ordering:

x1x2 . . . xm ≤ y1y2 . . . yn ⇔ x1x2 . . . xm = yi1yi2 . . . yim for some

1 ≤ i1 < i2 < · · · < ym ≤ n.

Example: aaa ≤ ababa, bbb � ababa.

Theorem (Higman 1952)

A∗ is WQO under the subword ordering.

This (and/or Kruskal’s Tree Theorem) underpin all non-trivial
WQO results.
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Words: factor ordering

Factor (or contiguous subword) ordering on A∗:

x1x2 . . . xm ≤ y1y2 . . . yn ⇔ x1x2 . . . xm = yiyi+1 . . . yi+m−1

for some i .

Example: aaa � ababa, bab ≤ ababa.
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WQO problem for factor ordering (1)

Given: C = Av(w1, . . . ,wm) – a downward closed set under factor
ordering.
Note: C is a regular language.

Define a directed graph Γ(C) as follows.
Let ` = max{|w1|, . . . , |wm|}.

Vertices: C ∩ A`.
Edges: a1a2 . . . a` → a2 . . . a`a`+1.

Facts
I Every word w ∈ C with |w | ≥ ` defines a path in Γ(C).

I Every path in Γ(C) defines a unique word w ∈ C with |w | ≥ `.
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WQO problem for factor ordering (2)

Definition
A directed cycle is said to be an in-out cycle if it contains a vertex
of indegree > 1 and a vertex of out-degree > 1.

Fact
In-out cycles in Γ(C) lead to antichains.

Example

Let: C = Av(baa, bab).

aaa aab

aba

abb bbb

bba

An in-out cycle: bbb → bbb.
Antichain: abia, i ≥ 3.
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WQO problem for factor ordering (3)

Theorem
C = Av(w1, . . . ,wm) contains an antichain if and only if Γ(C)
contains an in-out cycle.

Corollary

WQO problem is decidable for A∗ under the factor ordering.

This result is a special case of the following:

Theorem (Atminas, Lozin, Moshkov 2013)

It is decidable in polynomial time whether a regular language over
A contains an antichain under the factor ordering.
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Permutations

Permutation = a sequence σ = s1 . . . sn s.t.
{s1, . . . , sn} = {1, . . . , n}.

S = the set of all permutations.

Sn = all permutations of length n; S =
⋃∞

n=1 Sn.

Canonical representatives of non-repeating sequences.

Example

perm(2, 7, 5) = 132 = , perm(1, e, π, i2) = 2341 = .
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Permutations: involvement ordering

Analogous to subword ordering.

s1 . . . sm ≤ t1 . . . tn ⇔ s1 . . . sm = perm(ti1 . . . tim) for some

1 ≤ i1 < · · · < im ≤ n.

Example
231 ≤ 3142 123 � 3142

≤ � .

Open Problem

Is the WQO problem decidable for permutations under the
involvement ordering?
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Permutations: consecutive involvement ordering

s1s2 . . . sm ≤ t1t2 . . . tn ⇔ s1s2 . . . sm = perm(ti ti+1 . . . ti+m−1)

for some i .

Example

231 � 3142, 213 ≤ 3142.

Question
Is the WQO problem decidable for permutations under the
consecutive involvement ordering?
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Graph Γ(C)

C = Av(π1, . . . , πm); ` = max{|π1|, . . . , |πm|}.

Vertices: C ∩ S`;
Edges: a1 . . . a` → b1 . . . b` ⇔ perm(a2 . . . a`) = perm(b1 . . . b`−1).

Facts

I Every permutation σ ∈ C with |σ| ≥ ` defines a path in Γ(C).

I BUT: a path in Γ(C) may correspond to several σ (an
ambiguous path).
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First obstacle to WQO: in-out cycles

Fact
If Γ(C) has an in-out cycle then C contains an infinite antichain.

Example

C = Av(231, 312, 1234, 1243, 1432, 2431, 3142, 4213, 4321).

Γ(C) =

Antichain: for k = 1, 2, . . . .

︸ ︷︷
︸

k
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Bicyclic classes

Bicycle: digraph consisting of two simple cycles connected by a
single non-trivial path.

C is bicyclic if Γ(C) is a bicycle (or a degenerate form, where one or
both cycles are not present).

Fact
If C has no in-out cycles then it is a finite union of bicyclic classes.

So we may restrict our WQO considerations to bicyclic classes.
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Second obstacle to WQO: ambiguous paths

Fact
If a bicyclic class C has an ambiguous path which begins and ends
on the same cycle then C contains an infinite antichain.

Example

Antichain: for k = 1, 2, . . . .

︸ ︷︷
︸

k

University of St Andrews Nik Ruškuc: Deciding WQO



Going around a cycle

Consider a cycle with no ambiguous paths.

The effect of repeatedly going around the cycle can be viewed as a
permutation α = a1 . . . an which is repeatedly juxtaposed with
itself according to a fixed rule.

This in turn can be represented as a juxtaposition
α′α′′ = a′1 . . . a

′
na
′′
1 . . . a

′′
n of two copies of α.

Let ai , aj be two entries, consecutive in value.

If a′′i < a′i < a′j < a′′j we say that (ai , aj) is a nested interval of α.

Example

Cycle: Juxtaposition: · · ·

Note: No antichains here.
α′ α′′
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Third obstacle to WQO: inserting a point into a nested
interval

Fact
If a bicyclic class C has an ambiguous path which begins on the
initial cycle and ends on the connecting path which allows insertion
into a nested interval of α then C contains an infinite antichain.

Example

Antichain: . . .

︸ ︷︷ ︸
k
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No more obstacles to WQO

Theorem (McDevitt, NR)

A downward closed class C = Av(π1, . . . , πm) of permutations
under the consecutive involvement ordering is WQO iff the
following three conditions are satisfied:

(1) Γ(C) has no in-out cycles;

(2) no bicyclic component of Γ(C) has an ambiguous path starting
and ending on the same cycle;

(3) no bicyclic component of Γ(C) permits insertion into a nested
interval.

Corollary (McDevitt, NR)

WQO problem is decidable for permutations under the factor
ordering.
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Concluding remarks

Similar techniques, involving the graph Γ(C), can be used to prove
that the atomicity problem is decidable for: (a) permutations
under the consecutive factor ordering; and (b) words under factor
ordering.

A downward closed set is atomic if it is not a union of two proper
downward closed subsets; equivalently: Joint Embedding Property.

Braunfeld (2019) proved that atomicity is undecidable for: (a)
graphs under the induced subgraph ordering; and (b) 3-dimensional
permutations under the involvement ordering.
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Questions

Questions
Are the atomicity and WQO problems decidable for 3-dimensional
permutations, where in two dimensions the ordering is consecutive,
and in the remaining one it is not? What can be said about
higher-dimensional permutations?

Question
To what extent can the WQO and atomicity results be extended to
infinitely based classes? E.g. Av(B) where B is a periodic
antichain?
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THANK YOU!
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