On the location of the zeros of the independence polynomial of bounded degree graphs

Guus Regts

University of Amsterdam

Scottish Combinatorics Meeting 2019, Edingburgh

$$
\text { April, 26, } 2019
$$

Partly based on joint works with Viresh Patel, and Han Peters, UvA

My collaborators

From left to right: Viresh Patel, and Han Peters:

Structure of this presentation

- Definition of the independence polynomial and why do we care about its zeros. With motivation from
- Statistical physics
- Computer Science
- Survey of results
- Ingredients of proofs: connection to complex dynamical systems

The independence polynomial

The independence polynomial

For a graph $G=(V, E)$, the independence polynomial is defined as

$$
Z_{G}(\lambda)=\sum_{\substack{I \subseteq V \\ l \text { independent }}} \lambda^{|l|}=\sum_{k=0}^{\alpha(G)} i_{k} \lambda^{k} .
$$

Interpretation from statistical physics

A model for a gas:

- Particles can occupy vertices of a graph.
- Two particles cannot occupy the same vertex, nor can they occupy neighbouring vertices

Interpretation from statistical physics

A model for a gas:

- Particles can occupy vertices of a graph.
- Two particles cannot occupy the same vertex, nor can they occupy neighbouring vertices \Rightarrow valid configurations are independent sets

Interpretation from statistical physics

A model for a gas:

- Particles can occupy vertices of a graph.
- Two particles cannot occupy the same vertex, nor can they occupy neighbouring vertices \Rightarrow valid configurations are independent sets
- The probability of a valid configuration J is proportional to the Boltzman weight of the configuration, which is $\lambda^{|J|}$.

Interpretation from statistical physics

A model for a gas:

- Particles can occupy vertices of a graph.
- Two particles cannot occupy the same vertex, nor can they occupy neighbouring vertices \Rightarrow valid configurations are independent sets
- The probability of a valid configuration J is proportional to the Boltzman weight of the configuration, which is $\lambda^{|J|}$. So

$$
\operatorname{Pr}[J]=\frac{\lambda^{|J|}}{\sum_{I} \lambda^{|l|}}=\frac{\lambda^{|J|}}{Z_{G}(\lambda)}
$$

Interpretation from statistical physics

A model for a gas:

- Particles can occupy vertices of a graph.
- Two particles cannot occupy the same vertex, nor can they occupy neighbouring vertices \Rightarrow valid configurations are independent sets
- The probability of a valid configuration J is proportional to the Boltzman weight of the configuration, which is $\lambda^{|J|}$. So

$$
\operatorname{Pr}[J]=\frac{\lambda^{|J|}}{\sum_{I} \lambda^{|l|}}=\frac{\lambda^{|J|}}{Z_{G}(\lambda)}
$$

Question

Can one (approximately) compute $Z_{G}(\lambda)$ efficiently? Can one (approximately) sample from this distribution efficiently?

Independence polynomial

Recall

$$
\operatorname{Pr}[J]=\frac{\lambda^{|J|}}{\sum_{I} \lambda^{|l|}}=\frac{\lambda^{|J|}}{Z_{G}(\lambda)} .
$$

Question

Given $\lambda>0$. What is the expected number of particles per vertex?

Independence polynomial

Recall

$$
\operatorname{Pr}[J]=\frac{\lambda^{|J|}}{\sum_{I} \lambda^{|l|}}=\frac{\lambda^{|J|}}{Z_{G}(\lambda)}
$$

Question

Given $\lambda>0$. What is the expected number of particles per vertex?

Answer

$$
\lambda \frac{\frac{d}{d \lambda} \log \left(Z_{G}(\lambda)\right)}{|V(G)|}
$$

Studying $\log \left(Z_{G}(\lambda)\right)$

In statistical physics one typically considers a sequence of larger and larger subgraphs $\left(G_{n}\right)$ of a fixed infinite graph G and asks

Question

Is the following limit analytic as a function of λ ?

$$
f(\lambda):=\lim _{n \rightarrow \infty} \frac{\log \left(Z_{G_{n}}(\lambda)\right)}{\left|V\left(G_{n}\right)\right|}
$$

Studying $\log \left(Z_{G}(\lambda)\right)$

In statistical physics one typically considers a sequence of larger and larger subgraphs $\left(G_{n}\right)$ of a fixed infinite graph G and asks

Question

Is the following limit analytic as a function of λ ?

$$
f(\lambda):=\lim _{n \rightarrow \infty} \frac{\log \left(Z_{G_{n}}(\lambda)\right)}{\left|V\left(G_{n}\right)\right|}
$$

Definition

If f is not analytic at some $\lambda>0$, then phase transition.

Studying $\log \left(Z_{G}(\lambda)\right)$

In statistical physics one typically considers a sequence of larger and larger subgraphs $\left(G_{n}\right)$ of a fixed infinite graph G and asks

Question

Is the following limit analytic as a function of λ ?

$$
f(\lambda):=\lim _{n \rightarrow \infty} \frac{\log \left(Z_{G_{n}}(\lambda)\right)}{\left|V\left(G_{n}\right)\right|}
$$

Definition

If f is not analytic at some $\lambda>0$, then phase transition.

Theorem (Lee-Yang 1952)
If the complex roots of the polynomials $Z_{G_{n}}$ do not accumulate on λ, then f is analytic at λ.

Location of zeros of Z_{G} and computing Z_{G}

Recall the question
Question
Can one (approximately) compute $Z_{G}(\lambda)$ efficiently?

Location of zeros of Z_{G} and computing Z_{G}

Recall the question
Question
Can one (approximately) compute $Z_{G}(\lambda)$ efficiently?

Answer (Patel and Regts 2019, Barvinok 2016)
Fix an (inifinite) collection of graphs \mathcal{G}. Let $\lambda^{*}>0$. If there exists an open region $U \subset \mathbb{C}$ containing $\left[0, \lambda^{*}\right]$ such that for all $\lambda \in U$ and $G \in \mathcal{G}$, $Z_{G}(\lambda) \neq 0$, then there is an algorithm that (approximately) computes $Z_{G}\left(\lambda^{*}\right)$ efficiently for all $G \in \mathcal{G}$.

Location/absence of zeros of Z_{G}

For $\Delta \in \mathbb{N}_{\geq 3}$ let \mathcal{G}_{Δ} be the collection of graphs of maximum degree at most Δ and let

$$
\lambda_{c}(\Delta):=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}
$$

Location/absence of zeros of Z_{G}

For $\Delta \in \mathbb{N}_{\geq 3}$ let \mathcal{G}_{Δ} be the collection of graphs of maximum degree at most Δ and let

$$
\lambda_{c}(\Delta):=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} .
$$

Theorem (Peters and Regts, 2019; Conjectured by Sokal in 2001)

- There exists an open region D_{Δ} in \mathbb{C} containing $\left[0, \lambda_{c}(\Delta)\right)$ such that for any graph $G \in \mathcal{G}_{\Delta}$ and $\lambda \in D_{\Delta}$,

$$
Z_{G}(\lambda) \neq 0
$$

- There exists a sequence of graphs $\left(G_{n}\right) \subset \mathcal{G}_{\Delta}$ and a sequence $\left(\lambda_{n}\right)$ such that

$$
Z_{G_{n}}\left(\lambda_{n}\right)=0 \text { and } \lambda_{n} \rightarrow \lambda_{c} .
$$

Computational threshold at phase transition

More zero-free regions/ regions with zeros for Z_{G}

Contributions from:

- Scott and Sokal, 2005
- Peters Regts, 2019
- Bezáková, Galanis, Goldberg and Štefankovič, 2018
- Bencs and Csikvári, 2018
- Buys, 2019
- Vondrák and Srivastava, 2019+

How to prove these results?

How to prove these results?

Fundamental recurrence for Z_{G} : for a fixed vertex v

$$
Z_{G}(\lambda)=\lambda Z_{G \backslash N[v]}(\lambda)+Z_{G-v}(\lambda)
$$

Definition

Let us define, assuming $Z_{G-v}(\lambda) \neq 0$,

$$
R_{G, v}:=\frac{\lambda Z_{G \backslash N[v]}(\lambda)}{Z_{G-v}(\lambda)}
$$

How to prove these results?

Fundamental recurrence for Z_{G} : for a fixed vertex v

$$
Z_{G}(\lambda)=\lambda Z_{G \backslash N[v]}(\lambda)+Z_{G-v}(\lambda)
$$

Definition

Let us define, assuming $Z_{G-v}(\lambda) \neq 0$,

$$
R_{G, v}:=\frac{\lambda Z_{G \backslash N[v]}(\lambda)}{Z_{G-v}(\lambda)}
$$

A useful observation:

$$
R_{G, v} \neq-1 \text { if and only if } Z_{G}(\lambda) \neq 0
$$

A recurrence relation

Definition

Let G be a graph with fixed vertex v_{0}. Let v_{1}, \ldots, v_{d} be the neighbors of v_{0} in G (in any order). Set $G_{0}=G-v_{0}$ and define for $i=1, \ldots, d$, $G_{i}:=G_{i-1}-v_{i}$. Then $G_{d}=G \backslash N\left[v_{0}\right]$.

Lemma

Suppose $Z_{G_{i}}(\lambda) \neq 0$ for all $i=0, \ldots, d$. Then

$$
R_{G, v_{0}}=\frac{\lambda}{\prod_{i=1}^{d}\left(1+R_{G_{i-1}, v_{i}}\right)}
$$

Proof sketch of Shearer's bound

Theorem (Shearer 1985, Scott Sokal 2005)
Let $\Delta \geq 3$. Let $H=(V, E) \in \mathcal{G}_{\Delta}$ and let λ be such that $|\lambda| \leq \lambda^{*}(\Delta):=\frac{(\Delta-1)^{\Delta-1}}{\Delta^{\Delta}}$. Then $Z_{H}(\lambda) \neq 0$.

Proof sketch of Shearer's bound

Theorem (Shearer 1985, Scott Sokal 2005)
Let $\Delta \geq 3$. Let $H=(V, E) \in \mathcal{G}_{\Delta}$ and let λ be such that $|\lambda| \leq \lambda^{*}(\Delta):=\frac{(\Delta-1)^{\Delta-1}}{\Delta^{\Delta}}$. Then $Z_{H}(\lambda) \neq 0$.

Proof.

Idea: assume H connected. Use

$$
R_{G, v_{0}}=\frac{\lambda}{\prod_{i=1}^{d}\left(1+R_{G_{i-1}, v_{i}}\right)},
$$

to prove inductively that the following holds for all $U \subseteq V \backslash\left\{u_{0}\right\}$ (for some fixed u_{0}):
(i) $Z_{H[U]}(\lambda) \neq 0$,
(ii) if $u \in U$ has a neighbour in $V \backslash U$, then $\left|R_{H}[U], u\right|<1 / \Delta$.

Proof of Sokal's conjecture: ideas

Theorem (Peters and Regts 2019)
There exists an open region D_{Δ} in \mathbb{C} containing $\left[0, \lambda_{c}(\Delta)\right)$ such that for any graph G of max. degree at most Δ and $\lambda \in D_{\Delta}, Z_{G}(\lambda) \neq 0$.

Proof of Sokal's conjecture: ideas

Theorem (Peters and Regts 2019)
There exists an open region D_{Δ} in \mathbb{C} containing $\left[0, \lambda_{c}(\Delta)\right)$ such that for any graph G of max. degree at most Δ and $\lambda \in D_{\Delta}, Z_{G}(\lambda) \neq 0$.
$1 F\left(x_{1}, \ldots, x_{d}\right)=\lambda / \prod_{i=1}^{d}\left(1+x_{i}\right)$. Goal: find a 'trapping region' for F.

Proof of Sokal's conjecture: ideas

Theorem (Peters and Regts 2019)
There exists an open region D_{Δ} in \mathbb{C} containing $\left[0, \lambda_{c}(\Delta)\right)$ such that for any graph G of max. degree at most Δ and $\lambda \in D_{\Delta}, Z_{G}(\lambda) \neq 0$.
$1 F\left(x_{1}, \ldots, x_{d}\right)=\lambda / \prod_{i=1}^{d}\left(1+x_{i}\right)$. Goal: find a 'trapping region' for F. Not straightforward, univariate version $f(x)=\lambda /(1+x)^{d}$ is not a contraction on $\mathbb{R}_{\geq 0}$.

Proof of Sokal's conjecture: ideas

Theorem (Peters and Regts 2019)
There exists an open region D_{Δ} in \mathbb{C} containing $\left[0, \lambda_{c}(\Delta)\right)$ such that for any graph G of max. degree at most Δ and $\lambda \in D_{\Delta}, Z_{G}(\lambda) \neq 0$.
$1 F\left(x_{1}, \ldots, x_{d}\right)=\lambda / \prod_{i=1}^{d}\left(1+x_{i}\right)$. Goal: find a 'trapping region' for F. Not straightforward, univariate version $f(x)=\lambda /(1+x)^{d}$ is not a contraction on $\mathbb{R}_{\geq 0}$.
2 Find conjugation $g=\varphi \circ f \circ \varphi^{-1}$ with $\left|g^{\prime}\right|<1$ on $\mathbb{R}_{\geq 0}$.

Proof of Sokal's conjecture: ideas

Theorem (Peters and Regts 2019)

There exists an open region D_{Δ} in C containing $\left[0, \lambda_{c}(\Delta)\right)$ such that for any graph G of max. degree at most Δ and $\lambda \in D_{\Delta}, Z_{G}(\lambda) \neq 0$.
$1 F\left(x_{1}, \ldots, x_{d}\right)=\lambda / \prod_{i=1}^{d}\left(1+x_{i}\right)$. Goal: find a 'trapping region' for F. Not straightforward, univariate version $f(x)=\lambda /(1+x)^{d}$ is not a contraction on $\mathbb{R}_{\geq 0}$.
2 Find conjugation $g=\varphi \circ f \circ \varphi^{-1}$ with $\left|g^{\prime}\right|<1$ on $\mathbb{R}_{\geq 0}$.
3 Find open set D_{Δ} in the parameter space and 'trapping region' \mathcal{U} such that for all $z \in \mathcal{U}$ and $\lambda \in D_{\Delta}, g(z) \in \mathcal{U}$.

Proof of Sokal's conjecture: ideas

Theorem (Peters and Regts 2019)

There exists an open region D_{Δ} in C containing $\left[0, \lambda_{c}(\Delta)\right)$ such that for any graph G of max. degree at most Δ and $\lambda \in D_{\Delta}, Z_{G}(\lambda) \neq 0$.
$1 F\left(x_{1}, \ldots, x_{d}\right)=\lambda / \prod_{i=1}^{d}\left(1+x_{i}\right)$. Goal: find a 'trapping region' for F. Not straightforward, univariate version $f(x)=\lambda /(1+x)^{d}$ is not a contraction on $\mathbb{R}_{\geq 0}$.
2 Find conjugation $g=\varphi \circ f \circ \varphi^{-1}$ with $\left|g^{\prime}\right|<1$ on $\mathbb{R}_{\geq 0}$.
3 Find open set D_{Δ} in the parameter space and 'trapping region' \mathcal{U} such that for all $z \in \mathcal{U}$ and $\lambda \in D_{\Delta}, g(z) \in \mathcal{U}$.
4 Show that \mathcal{U} also works for F.

Proof of existence of zeros: ideas

- The function f_{λ} corresponds to the recurrence for Cayley trees.
- Use chaotic behaviour of complex dynamical system $\left\{f_{\lambda}^{\circ n}(\lambda)\right\}$, where

$$
f_{\lambda}(x)=\frac{\lambda}{(1+x)^{d}}
$$

Future work

- Find a full description of the joint zero-free region of Z_{G} for $G \in \mathcal{G}_{\Delta}$.
- Find out for which λ approximating $Z_{G}(\lambda)$ is hard.
- Extend ideas to other models in statistical physics: Ising model, Potts model.

Thank you for your attention!

