On the location of the zeros of the independence polynomial of bounded degree graphs

Guus Regts

University of Amsterdam

Scottish Combinatorics Meeting 2019, Edingburgh

April, 26, 2019

Partly based on joint works with Viresh Patel, and Han Peters, UvA

My collaborators

From left to right: Viresh Patel, and Han Peters:

Structure of this presentation

- Definition of the independence polynomial and why do we care about its zeros. With motivation from
 - Statistical physics
 - Computer Science
- Survey of results
- Ingredients of proofs: connection to complex dynamical systems

The independence polynomial

The independence polynomial

For a graph G = (V, E), the independence polynomial is defined as

$$Z_G(\lambda) = \sum_{\substack{I \subseteq V \\ I \text{ independent}}} \lambda^{|I|} = \sum_{k=0}^{\alpha(G)} i_k \lambda^k.$$

- Particles can occupy vertices of a graph.
- Two particles cannot occupy the same vertex, nor can they occupy neighbouring vertices

- Particles can occupy vertices of a graph.
- Two particles cannot occupy the same vertex, nor can they occupy neighbouring vertices ⇒ valid configurations are independent sets

- Particles can occupy vertices of a graph.
- Two particles cannot occupy the same vertex, nor can they occupy neighbouring vertices ⇒ valid configurations are independent sets
- The probability of a valid configuration J is proportional to the Boltzman weight of the configuration, which is $\lambda^{|J|}$.

- Particles can occupy vertices of a graph.
- Two particles cannot occupy the same vertex, nor can they occupy neighbouring vertices ⇒ valid configurations are independent sets
- The probability of a valid configuration J is proportional to the Boltzman weight of the configuration, which is $\lambda^{|J|}$. So

$$\Pr[J] = \frac{\lambda^{|J|}}{\sum_{I} \lambda^{|I|}} = \frac{\lambda^{|J|}}{Z_G(\lambda)}.$$

A model for a gas:

- Particles can occupy vertices of a graph.
- Two particles cannot occupy the same vertex, nor can they occupy neighbouring vertices ⇒ valid configurations are independent sets
- The probability of a valid configuration J is proportional to the Boltzman weight of the configuration, which is $\lambda^{|J|}$. So

$$\Pr[J] = \frac{\lambda^{|J|}}{\sum_{I} \lambda^{|I|}} = \frac{\lambda^{|J|}}{Z_G(\lambda)}.$$

Question

Can one (approximately) compute $Z_G(\lambda)$ efficiently? Can one (approximately) sample from this distribution efficiently?

Independence polynomial

Recall

$$\Pr[J] = \frac{\lambda^{|J|}}{\sum_{I} \lambda^{|I|}} = \frac{\lambda^{|J|}}{Z_G(\lambda)}.$$

Question

Given $\lambda > 0$. What is the expected number of particles per vertex?

Independence polynomial

Recall

$$\Pr[J] = \frac{\lambda^{|J|}}{\sum_{I} \lambda^{|I|}} = \frac{\lambda^{|J|}}{Z_G(\lambda)}.$$

Question

Given $\lambda > 0$. What is the expected number of particles per vertex?

Answer

$$\lambda \frac{\frac{d}{d\lambda}\log(Z_G(\lambda))}{|V(G)|}.$$

Studying $\log(Z_G(\lambda))$

In statistical physics one typically considers a sequence of larger and larger subgraphs (G_n) of a fixed infinite graph G and asks

Question

Is the following limit analytic as a function of λ ?

$$f(\lambda) := \lim_{n \to \infty} \frac{\log(Z_{G_n}(\lambda))}{|V(G_n)|}$$

Studying $\log(Z_G(\lambda))$

In statistical physics one typically considers a sequence of larger and larger subgraphs (G_n) of a fixed infinite graph G and asks

Question

Is the following limit analytic as a function of λ ?

$$f(\lambda) := \lim_{n \to \infty} \frac{\log(Z_{G_n}(\lambda))}{|V(G_n)|}$$

Definition

If f is not analytic at some $\lambda > 0$, then phase transition.

Studying $\log(Z_G(\lambda))$

In statistical physics one typically considers a sequence of larger and larger subgraphs (G_n) of a fixed infinite graph G and asks

Question

Is the following limit analytic as a function of λ ?

$$f(\lambda) := \lim_{n \to \infty} \frac{\log(Z_{G_n}(\lambda))}{|V(G_n)|}$$

Definition

If f is not analytic at some $\lambda > 0$, then phase transition.

Theorem (Lee-Yang 1952)

If the complex roots of the polynomials Z_{G_n} do not accumulate on λ , then f is analytic at λ .

Location of zeros of Z_G and computing Z_G

Recall the question

Question

Can one (approximately) compute $Z_G(\lambda)$ efficiently?

Location of zeros of Z_G and computing Z_G

Recall the question

Question

Can one (approximately) compute $Z_G(\lambda)$ efficiently?

Answer (Patel and Regts 2019, Barvinok 2016)

Fix an (inifinite) collection of graphs \mathcal{G} . Let $\lambda^*>0$. If there exists an open region $U\subset\mathbb{C}$ containing $[0,\lambda^*]$ such that for all $\lambda\in U$ and $G\in\mathcal{G}$, $Z_G(\lambda)\neq 0$, then there is an algorithm that (approximately) computes $Z_G(\lambda^*)$ efficiently for all $G\in\mathcal{G}$.

Location/absence of zeros of Z_G

For $\Delta \in \mathbb{N}_{\geq 3}$ let \mathcal{G}_{Δ} be the collection of graphs of maximum degree at most Δ and let

$$\lambda_c(\Delta) := \frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}}.$$

Location/absence of zeros of Z_G

For $\Delta \in \mathbb{N}_{\geq 3}$ let \mathcal{G}_{Δ} be the collection of graphs of maximum degree at most Δ and let

$$\lambda_c(\Delta) := \frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}}.$$

Theorem (Peters and Regts, 2019; Conjectured by Sokal in 2001)

• There exists an open region D_{Δ} in $\mathbb C$ containing $[0, \lambda_c(\Delta))$ such that for any graph $G \in \mathcal G_{\Delta}$ and $\lambda \in D_{\Delta}$,

$$Z_G(\lambda) \neq 0$$
.

• There exists a sequence of graphs $(G_n) \subset \mathcal{G}_{\Delta}$ and a sequence (λ_n) such that

$$Z_{G_n}(\lambda_n) = 0$$
 and $\lambda_n \to \lambda_c$.

Computational threshold at phase transition

More zero-free regions/ regions with zeros for Z_G

Contributions from:

- Scott and Sokal, 2005
- Peters Regts, 2019
- Bezáková, Galanis, Goldberg and Štefankovič, 2018
- Bencs and Csikvári, 2018
- Buys, 2019
- Vondrák and Srivastava, 2019+

How to prove these results?

How to prove these results?

Fundamental recurrence for Z_G : for a fixed vertex v

$$Z_G(\lambda) = \lambda Z_{G \setminus N[\nu]}(\lambda) + Z_{G-\nu}(\lambda).$$

Definition

Let us define, assuming $Z_{G-\nu}(\lambda) \neq 0$,

$$R_{G,\nu} := \frac{\lambda Z_{G \setminus N[\nu]}(\lambda)}{Z_{G-\nu}(\lambda)}.$$

How to prove these results?

Fundamental recurrence for Z_G : for a fixed vertex v

$$Z_G(\lambda) = \lambda Z_{G \setminus N[\nu]}(\lambda) + Z_{G-\nu}(\lambda).$$

Definition

Let us define, assuming $Z_{G-v}(\lambda) \neq 0$,

$$R_{G,v} := \frac{\lambda Z_{G \setminus N[v]}(\lambda)}{Z_{G-v}(\lambda)}.$$

A useful observation:

$$R_{G,v} \neq -1$$
 if and only if $Z_G(\lambda) \neq 0$.

A recurrence relation

Definition

Let G be a graph with fixed vertex v_0 . Let v_1, \ldots, v_d be the neighbors of v_0 in G (in any order). Set $G_0 = G - v_0$ and define for $i = 1, \ldots, d$, $G_i := G_{i-1} - v_i$. Then $G_d = G \setminus N[v_0]$.

Lemma

Suppose $Z_{G_i}(\lambda) \neq 0$ for all i = 0, ..., d. Then

$$R_{G,v_0} = \frac{\lambda}{\prod_{i=1}^{d} (1 + R_{G_{i-1},v_i})}.$$

Proof sketch of Shearer's bound

Theorem (Shearer 1985, Scott Sokal 2005)

Let $\Delta \geq 3$. Let $H = (V, E) \in \mathcal{G}_{\Delta}$ and let λ be such that

$$|\lambda| \leq \lambda^*(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{\Delta^{\Delta}}$$
. Then $Z_H(\lambda) \neq 0$.

Proof sketch of Shearer's bound

Theorem (Shearer 1985, Scott Sokal 2005)

Let $\Delta \geq 3$. Let $H = (V, E) \in \mathcal{G}_{\Delta}$ and let λ be such that

$$|\lambda| \leq \lambda^*(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{\Delta^{\Delta}}$$
. Then $Z_H(\lambda) \neq 0$.

Proof.

Idea: assume H connected. Use

$$R_{G,\nu_0} = \frac{\lambda}{\prod_{i=1}^d (1 + R_{G_{i-1},\nu_i})},$$

to prove inductively that the following holds for all $U \subseteq V \setminus \{u_0\}$ (for some fixed u_0):

- (i) $Z_{H[U]}(\lambda) \neq 0$,
- (ii) if $u \in U$ has a neighbour in $V \setminus U$, then $|R_{H[U],u}| < 1/\Delta$.

Theorem (Peters and Regts 2019)

There exists an open region D_{Δ} in $\mathbb C$ containing $[0,\lambda_c(\Delta))$ such that for any graph G of max. degree at most Δ and $\lambda\in D_{\Delta}$, $Z_G(\lambda)\neq 0$.

Theorem (Peters and Regts 2019)

There exists an open region D_{Δ} in $\mathbb C$ containing $[0,\lambda_c(\Delta))$ such that for any graph G of max. degree at most Δ and $\lambda\in D_{\Delta}$, $Z_G(\lambda)\neq 0$.

1 $F(x_1,...,x_d) = \lambda / \prod_{i=1}^d (1+x_i)$. Goal: find a 'trapping region' for F.

Theorem (Peters and Regts 2019)

There exists an open region D_{Δ} in $\mathbb C$ containing $[0, \lambda_c(\Delta))$ such that for any graph G of max. degree at most Δ and $\lambda \in D_{\Delta}$, $Z_G(\lambda) \neq 0$.

1 $F(x_1, ..., x_d) = \lambda / \prod_{i=1}^d (1+x_i)$. Goal: find a 'trapping region' for F. Not straightforward, univariate version $f(x) = \lambda / (1+x)^d$ is not a contraction on $\mathbb{R}_{>0}$.

Theorem (Peters and Regts 2019)

There exists an open region D_{Δ} in $\mathbb C$ containing $[0,\lambda_c(\Delta))$ such that for any graph G of max. degree at most Δ and $\lambda\in D_{\Delta}$, $Z_G(\lambda)\neq 0$.

- 1 $F(x_1,...,x_d) = \lambda/\prod_{i=1}^d (1+x_i)$. Goal: find a 'trapping region' for F. Not straightforward, univariate version $f(x) = \lambda/(1+x)^d$ is not a contraction on $\mathbb{R}_{\geq 0}$.
- 2 Find conjugation $g = \varphi \circ f \circ \varphi^{-1}$ with |g'| < 1 on $\mathbb{R}_{\geq 0}$.

Theorem (Peters and Regts 2019)

There exists an open region D_{Δ} in $\mathbb C$ containing $[0, \lambda_c(\Delta))$ such that for any graph G of max. degree at most Δ and $\lambda \in D_{\Delta}$, $Z_G(\lambda) \neq 0$.

- 1 $F(x_1,\ldots,x_d)=\lambda/\prod_{i=1}^d(1+x_i)$. Goal: find a 'trapping region' for F. Not straightforward, univariate version $f(x)=\lambda/(1+x)^d$ is not a contraction on $\mathbb{R}_{\geq 0}$.
- 2 Find conjugation $g = \varphi \circ f \circ \varphi^{-1}$ with |g'| < 1 on $\mathbb{R}_{\geq 0}$.
- 3 Find open set D_{Δ} in the parameter space and 'trapping region' \mathcal{U} such that for all $z \in \mathcal{U}$ and $\lambda \in D_{\Delta}$, $g(z) \in \mathcal{U}$.

Theorem (Peters and Regts 2019)

There exists an open region D_{Δ} in $\mathbb C$ containing $[0, \lambda_c(\Delta))$ such that for any graph G of max. degree at most Δ and $\lambda \in D_{\Delta}$, $Z_G(\lambda) \neq 0$.

- 1 $F(x_1,...,x_d) = \lambda/\prod_{i=1}^d (1+x_i)$. Goal: find a 'trapping region' for F. Not straightforward, univariate version $f(x) = \lambda/(1+x)^d$ is not a contraction on $\mathbb{R}_{\geq 0}$.
- 2 Find conjugation $g = \varphi \circ f \circ \varphi^{-1}$ with |g'| < 1 on $\mathbb{R}_{\geq 0}$.
- 3 Find open set D_{Δ} in the parameter space and 'trapping region' \mathcal{U} such that for all $z \in \mathcal{U}$ and $\lambda \in D_{\Delta}$, $g(z) \in \mathcal{U}$.
- 4 Show that \mathcal{U} also works for F.

Proof of existence of zeros: ideas

- The function f_{λ} corresponds to the recurrence for Cayley trees.
- \bullet Use chaotic behaviour of complex dynamical system $\{f_{\lambda}^{\circ n}(\lambda)\},$ where

$$f_{\lambda}(x) = \frac{\lambda}{(1+x)^d}$$

Future work

- ullet Find a full description of the joint zero-free region of Z_G for $G\in \mathcal{G}_\Delta.$
- Find out for which λ approximating $Z_G(\lambda)$ is hard.
- Extend ideas to other models in statistical physics: Ising model, Potts model.

Thank you for your attention!