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The Max-2-Lin(k) problem

We are given a set of m linear equations of the form
Ti—x; =c¢;; modk

Our goal is to find an assignment to {z; };-; maximising the number of satisfied
equations

Facts:
= if the system is satisfiable, it is trivial to find a satisfying assignment
= otherwise, finding an optimal solution is NP-hard

= there exists an SDP-based algorithm that, given a (1 — ¢)-satisfiable instance,
finds an assignment satisfying a 1 — O (v/elog k) fraction of equations

= almost optimal according to the Unique Games Conjecture
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Max-2-Lin(%) and Max-Cut

Suppose we are given a system of equations of the form

z;—x; =1 mod 2 (i~17)

We can construct a graph G = (V, E):
»V=A1,...,n}
* E={{i,j}:i~j}

Then,
= the system is satisfiable if and only if G is bipartite (i.e., there exists a cut
containing all edges in the graph)
= Maximising the number of satisfied equations is equivalent to finding the
largest cut in the graph
Recall: cut = “edges across a bipartition of the vertices”
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Max-Cut and the smallest eigenvalue

Suppose (wlog) G is connected and d-regular
= Let A be the adjacency matrix of G
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Max-Cut and the smallest eigenvalue

Suppose (wlog) G is connected and d-regular
= Let A be the adjacency matrix of G
= The smallest eigenvalue of A is equal to —d <= G is bipartite
= Moreover, the corresponding eigenvector encodes the optimal bipartition

Can we find a robust version of the statement above?
= Suppose now G is not bipartite, but a (1 — €)-fraction of the edges lie on a cut.

= |s it true that “the smallest eigenvalue of A is close to —(1 — €)d <= there
exists a cut containing a (1 — €)-fraction of the edges”™?

Not exactly:
= & s still true, but
= for the = part we need to be more careful
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Trevisan (STOC’09) proved:
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Max-Cut and the smallest eigenvalue: Trevisan’s result

Example: most negative eigenvalue has large absolute value

@ cig=r1
@ cg~ -1
O eigr0

Trevisan (STOC’09) proved:

= smallest eigenvalue is < —(1 — €)d = there exists a subgraph with a cut
containing a (1 — O(+/e))-fraction of its edges

= Algorithm for Max-Cut: use the bottom eigenvector of A to find a subset of
vertices that is “almost” bipartite, and then recurse on the rest of the graph

Q? Can we generalise this framework to arbitrary 2-variable linear systems?

5/12



Enter the Hermitian Laplacian
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where wi, = e is the k-th root of unity.
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Enter the Hermitian Laplacian

We are given a system S of linear equations on n variables of the form
Ti —x; =c¢ij mod k (zci>])
We define the adjacency operator As € C"*™ as

id . . Cij .
w:,” if i =% j
As(i,7) = Wi it j —2 4
0 O.W.
where wy, = e2™/* is the k-th root of unity.
Notice: z; — zj = cij => =; — i = —cij and w,, 7 = W,

KEY FACT: As is Hermitian = real eigenvalues and orthonormal eigenvectors

We then define the Laplacian operator Ls € C"*™ as
Ls=1—-D3"?AsD5"?

where Dy is diagonal and Ds (i,4) = >_; [As (i, j)|-
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Eigenvalues of the Hermitian Laplacian

Let A be the smallest eigenvalue of Ls. By Courant-Fischer,

. Cii N
. Ziﬁj |y(z) _wk]y(])’
A= min )
yeC™\ {0} Dy 1Y)
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Eigenvalues of the Hermitian Laplacian

Let A be the smallest eigenvalue of Ls. By Courant-Fischer,

. Cii N
. Ziﬁj |y(z) _wk]y(])’
A= min )
yeC™\ {0} Dy 1Y)

FACT: A =0 <= S has a satisfying assignment
* (<) Suppose S has a satisfying assignment ¢ : [n] — [k]

= Define y € C" such that y(i) = w,‘fm

. Cij 1|2 i cij+o()|?
f = D @) — Wiy () = X [l = w0 =0
= A=0 O

Can we prove a robust version of this fact?

7112



A Cheeger-type inequality for Max-2-Lin(k)

Let S be a system of 2-variable equations modulo k and ¢ : [n] — [k]U{L} a
partial assignment.
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A Cheeger-type inequality for Max-2-Lin(k)

Let S be a system of 2-variable equations modulo k and ¢ : [n] — [k]U{L} a
partial assignment.

Leti —25 j. We assign a penalty p?; according to

1), 6(7) # 1 A ¢(i) — $(j) Zk ciy
Pl 21 (0() = LAGG) # L)V (6(5) = LAGG) # 1)
0 ow.
sy p?,j
> i Holi) # 1}
u(¢) is close to 0 <= ¢ is an “almost satisfying” assignment on a subset of
equations that is “almost independent” on the rest of the system.

Unsatisfiability Ratio:  u(¢) =

Theorem

Let S be a system of 2-variable equations modulo k, and A\(Ls) the smallest
eigenvalue of its Laplacian. Then,

MLs) < min u < k(L
(Ls) S i () < (Ls)
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The “harder” direction (1/2)

Theorem

Let S be a system of 2-variable equations modulo k, and A\(Ls) the smallest
eigenvalue of its Laplacian. Then,

u(@) S kvVA(Ls)

~

min
¢:[n]—[k]U{L}
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The “harder” direction (1/2)
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Let S be a system of 2-variable equations modulo k, and A\(Ls) the smallest
eigenvalue of its Laplacian. Then,

i < kAL
st Sy UO) R EVALLS)

Proof ideas

= We have seen there exists a relation between quadratic forms of the
Laplacian and partial assignments
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Laplacian and partial assignments

= We want to use the eigenvector y corresponding to A\(Ls) to construct a good

partial assignment ¢
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The “harder” direction (1/2)

Theorem

Let S be a system of 2-variable equations modulo k, and A\(Ls) the smallest
eigenvalue of its Laplacian. Then,

i < kAL
st Sy UO) R EVALLS)

Proof ideas

= We have seen there exists a relation between quadratic forms of the
Laplacian and partial assignments

We want to use the eigenvector y corresponding to A\(Ls) to construct a good
partial assignment ¢

We need to come up with a rounding procedure

IDEA: treat y: [n] — C as an embedding in the complex unit ball

if |y(¢)| ~ 0, assign ¢(i) = L

Otherwise, (randomly) divide the complex plane in k regions corresponding to
the k possible assignments
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The “harder” direction (2/2)

Let y € C" be the bottom eigenvector of Ls. Assume (w.l.0.g.) max; |y(i)| = 1.
Rounding algorithm:

* Draw ¢ € [0, 1] such that #? is distributed uniformly over [0, 1]

» Set ¢(i) = Lforanyist. |y(i)] <t

» Draw i € [0, 27 /K] u.a.r.

* Set¢(i) =j <= |y(i)| > t AO(y(i),e™) € [2mj/k, 27 (j + 1) /k)
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Obtaining a full assignment: from local to global

= Using the eigenvector corresponding to A(Ls) we can find a good partial
assignment if one exists
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Obtaining a full assignment: from local to global

= Using the eigenvector corresponding to A(Ls) we can find a good partial
assignment if one exists

= Moreover, this partial assignment is defined on a set of variables almost
independent from the rest:

= we can recurse on the equations independent from these variables.

If the system is (1 — €)-satisfiable, the algorithm returns a full assignment which
satisfies a (1 — O(k)+/e)-fraction of equations.

~——— Algorithm

INPUT: a system of equations S

1. Compute the eigenvector y corresponding to A\(Ls)

. Apply the rounding procedure to find a partial assignment ¢

. Letvol(¢) = Ziaj 1{o(i) # L}

. ifu(e) > (1 —1/k) vol(¢) then Return a full random assignment

else if ¢ is a full assignment then Return ¢

else Recurse on a set of equations defined on variables {z;: ¢(i) = L}.

o o~ W N
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