Hermitian Laplacians, Cheeger inequalities, and 2-variable linear equations

Luca Zanetti (Cambridge)

Joint work with Huan Li (Fudan) and He Sun (Edinburgh)

We are given a set of m linear equations of the form

$$x_i - x_j \equiv c_{ij} \mod k$$

Our goal is to find an assignment to $\{x_i\}_{i=1}^n$ maximising the number of satisfied equations

We are given a set of m linear equations of the form

$$x_i - x_j \equiv c_{ij} \mod k$$

Our goal is to find an assignment to $\{x_i\}_{i=1}^n$ maximising the number of satisfied equations

Facts:

• if the system is satisfiable, it is trivial to find a satisfying assignment

We are given a set of m linear equations of the form

$$x_i - x_j \equiv c_{ij} \mod k$$

Our goal is to find an assignment to $\{x_i\}_{i=1}^n$ maximising the number of satisfied equations

Facts:

- if the system is satisfiable, it is trivial to find a satisfying assignment
- otherwise, finding an optimal solution is NP-hard

We are given a set of m linear equations of the form

$$x_i - x_j \equiv c_{ij} \mod k$$

Our goal is to find an assignment to $\{x_i\}_{i=1}^n$ maximising the number of satisfied equations

Facts:

- if the system is satisfiable, it is trivial to find a satisfying assignment
- otherwise, finding an optimal solution is NP-hard
- there exists an SDP-based algorithm that, given a $(1-\epsilon)$ -satisfiable instance, finds an assignment satisfying a $1-O\left(\sqrt{\epsilon\log k}\right)$ fraction of equations
- almost optimal according to the Unique Games Conjecture

Max-2-Lin(k) and Max-Cut

Suppose we are given a system of equations of the form

$$x_i - x_j \equiv 1 \mod 2 \qquad (i \sim j)$$

Max-2-Lin(k) and Max-Cut

Suppose we are given a system of equations of the form

$$x_i - x_j \equiv 1 \mod 2 \qquad (i \sim j)$$

We can construct a graph G = (V, E):

- $V = \{1, \dots, n\}$
- $E = \{\{i, j\} : i \sim j\}$

Max-2-Lin(k) and Max-Cut

Suppose we are given a system of equations of the form

$$x_i - x_j \equiv 1 \mod 2 \qquad (i \sim j)$$

We can construct a graph G = (V, E):

- $V = \{1, \dots, n\}$
- $\bullet \ E = \{\{i,j\} \colon i \sim j\}$

Then,

 the system is satisfiable if and only if G is bipartite (i.e., there exists a cut containing all edges in the graph) Suppose we are given a system of equations of the form

$$x_i - x_j \equiv 1 \mod 2 \qquad (i \sim j)$$

We can construct a graph G = (V, E):

- $V = \{1, \dots, n\}$
- $\bullet \ E = \{\{i,j\} \colon i \sim j\}$

Then,

- the system is satisfiable if and only if G is bipartite (i.e., there exists a cut containing all edges in the graph)
- Maximising the number of satisfied equations is equivalent to finding the largest cut in the graph

Recall: cut = "edges across a bipartition of the vertices"

Suppose (wlog) ${\cal G}$ is connected and d-regular

Let A be the adjacency matrix of G

Suppose (wlog) ${\cal G}$ is connected and d-regular

- Let A be the adjacency matrix of G
- The smallest eigenvalue of A is equal to $-d \iff G$ is bipartite

Suppose (wlog) ${\cal G}$ is connected and d-regular

- Let A be the adjacency matrix of G
- The smallest eigenvalue of A is equal to $-d \iff G$ is bipartite
- Moreover, the corresponding eigenvector encodes the optimal bipartition

Suppose (wlog) ${\cal G}$ is connected and d-regular

- Let A be the adjacency matrix of G
- The smallest eigenvalue of A is equal to $-d \iff G$ is bipartite
- Moreover, the corresponding eigenvector encodes the optimal bipartition

Suppose (wlog) ${\cal G}$ is connected and d-regular

- Let A be the adjacency matrix of G
- The smallest eigenvalue of A is equal to $-d \iff G$ is bipartite
- Moreover, the corresponding eigenvector encodes the optimal bipartition

Can we find a robust version of the statement above?

Suppose (wlog) ${\cal G}$ is connected and d-regular

- Let A be the adjacency matrix of G
- The smallest eigenvalue of A is equal to $-d \iff G$ is bipartite
- Moreover, the corresponding eigenvector encodes the optimal bipartition

Can we find a robust version of the statement above?

• Suppose now G is not bipartite, but a $(1 - \epsilon)$ -fraction of the edges lie on a cut.

Suppose (wlog) ${\cal G}$ is connected and d-regular

- Let A be the adjacency matrix of G
- The smallest eigenvalue of A is equal to $-d \iff G$ is bipartite
- Moreover, the corresponding eigenvector encodes the optimal bipartition

Can we find a robust version of the statement above?

- Suppose now G is not bipartite, but a (1ϵ) -fraction of the edges lie on a cut.
- Is it true that "the smallest eigenvalue of A is close to $-(1-\epsilon)d \iff$ there exists a cut containing a $(1-\epsilon)$ -fraction of the edges"?

Suppose (wlog) G is connected and d-regular

- Let A be the adjacency matrix of G
- The smallest eigenvalue of A is equal to $-d \iff G$ is bipartite
- Moreover, the corresponding eigenvector encodes the optimal bipartition

Can we find a robust version of the statement above?

- Suppose now G is not bipartite, but a (1ϵ) -fraction of the edges lie on a cut.
- Is it true that "the smallest eigenvalue of A is close to $-(1-\epsilon)d \iff$ there exists a cut containing a $(1-\epsilon)$ -fraction of the edges"?

Not exactly:

■

is still true, but

Suppose (wlog) G is connected and d-regular

- Let A be the adjacency matrix of G
- The smallest eigenvalue of A is equal to $-d \iff G$ is bipartite
- Moreover, the corresponding eigenvector encodes the optimal bipartition

Can we find a robust version of the statement above?

- Suppose now G is not bipartite, but a (1ϵ) -fraction of the edges lie on a cut.
- Is it true that "the smallest eigenvalue of A is close to $-(1-\epsilon)d \iff$ there exists a cut containing a $(1-\epsilon)$ -fraction of the edges"?

Not exactly:

- for the ⇒ part we need to be more careful

Example:

Example: most negative eigenvalue has large absolute value

Example: most negative eigenvalue has large absolute value

Trevisan (STOC'09) proved:

• smallest eigenvalue is $\leq -(1-\epsilon)d \Rightarrow$ there exists a subgraph with a cut containing a $(1-O(\sqrt{\epsilon}))$ -fraction of its edges

Example: most negative eigenvalue has large absolute value

Trevisan (STOC'09) proved:

- smallest eigenvalue is $\leq -(1-\epsilon)d \Rightarrow$ there exists a subgraph with a cut containing a $(1-O(\sqrt{\epsilon}))$ -fraction of its edges
- Algorithm for Max-Cut: use the bottom eigenvector of A to find a subset of vertices that is "almost" bipartite, and then recurse on the rest of the graph

Example: most negative eigenvalue has large absolute value

Trevisan (STOC'09) proved:

- smallest eigenvalue is $\leq -(1-\epsilon)d \Rightarrow$ there exists a subgraph with a cut containing a $(1-O(\sqrt{\epsilon}))$ -fraction of its edges
- Algorithm for Max-Cut: use the bottom eigenvector of A to find a subset of vertices that is "almost" bipartite, and then recurse on the rest of the graph

Q? Can we generalise this framework to arbitrary 2-variable linear systems?

We are given a system ${\mathcal S}$ of linear equations on n variables of the form

$$x_i - x_j \equiv c_{ij} \mod k \qquad (i \xrightarrow{c_{ij}} j)$$

We are given a system S of linear equations on n variables of the form

$$x_i - x_j \equiv c_{ij} \mod k \qquad (i \xrightarrow{c_{ij}} j)$$

We define the adjacency operator $A_{\mathcal{S}} \in \mathbb{C}^{n \times n}$ as

$$A_{\mathcal{S}}(i,j) = \begin{cases} \omega_k^{c_{ij}} & \text{if } i \xrightarrow{c_{ij}} j \\ \overline{\omega_k}^{c_{ij}} & \text{if } j \xrightarrow{c_{ij}} i \\ 0 & \text{o.w.} \end{cases}$$

where $\omega_k = e^{2\pi i/k}$ is the k-th root of unity.

We are given a system S of linear equations on n variables of the form

$$x_i - x_j \equiv c_{ij} \mod k \qquad (i \xrightarrow{c_{ij}} j)$$

We define the adjacency operator $A_{\mathcal{S}} \in \mathbb{C}^{n \times n}$ as

$$A_{\mathcal{S}}(i,j) = \begin{cases} \omega_k^{c_{ij}} & \text{if } i \xrightarrow{c_{ij}} j \\ \overline{\omega_k}^{c_{ij}} & \text{if } j \xrightarrow{c_{ij}} i \\ 0 & \text{o.w.} \end{cases}$$

where $\omega_k = \mathrm{e}^{2\pi i/k}$ is the k-th root of unity.

Notice:
$$x_i - x_j \equiv_k c_{ij} \implies x_j - x_i \equiv_k -c_{ij}$$
 and $\omega_k^{-c_{ij}} = \overline{\omega_k}{}^{c_{ij}}$.

We are given a system ${\mathcal S}$ of linear equations on n variables of the form

$$x_i - x_j \equiv c_{ij} \mod k \qquad (i \xrightarrow{c_{ij}} j)$$

We define the adjacency operator $A_{\mathcal{S}} \in \mathbb{C}^{n \times n}$ as

$$A_{\mathcal{S}}(i,j) = \begin{cases} \omega_k^{c_{ij}} & \text{if } i \xrightarrow{c_{ij}} j \\ \overline{\omega_k}^{c_{ij}} & \text{if } j \xrightarrow{c_{ij}} i \\ 0 & \text{o.w.} \end{cases}$$

where $\omega_k = e^{2\pi i/k}$ is the k-th root of unity.

Notice: $x_i - x_j \equiv_k c_{ij} \implies x_j - x_i \equiv_k -c_{ij}$ and $\omega_k^{-c_{ij}} = \overline{\omega_k}^{c_{ij}}$.

KEY FACT: A_S is Hermitian \Rightarrow real eigenvalues and orthonormal eigenvectors

We are given a system S of linear equations on n variables of the form

$$x_i - x_j \equiv c_{ij} \mod k \qquad (i \xrightarrow{c_{ij}} j)$$

We define the adjacency operator $A_{\mathcal{S}} \in \mathbb{C}^{n \times n}$ as

$$A_{\mathcal{S}}(i,j) = \begin{cases} \omega_k^{c_{ij}} & \text{if } i \xrightarrow{c_{ij}} j \\ \overline{\omega_k}^{c_{ij}} & \text{if } j \xrightarrow{c_{ij}} i \\ 0 & \text{o.w.} \end{cases}$$

where $\omega_k = e^{2\pi i/k}$ is the *k*-th root of unity.

Notice: $x_i - x_j \equiv_k c_{ij} \implies x_j - x_i \equiv_k -c_{ij}$ and $\omega_k^{-c_{ij}} = \overline{\omega_k}^{c_{ij}}$.

KEY FACT: A_S is Hermitian \Rightarrow real eigenvalues and orthonormal eigenvectors

We then define the Laplacian operator $L_{\mathcal{S}} \in \mathbb{C}^{n \times n}$ as

$$L_{\mathcal{S}} = I - D_{\mathcal{S}}^{-1/2} A_{\mathcal{S}} D_{\mathcal{S}}^{-1/2}$$

where $D_{\mathcal{S}}$ is diagonal and $D_{\mathcal{S}}(i,i) = \sum_{i} |A_{\mathcal{S}}(i,j)|$.

Let λ be the smallest eigenvalue of $L_{\mathcal{S}}$. By Courant-Fischer,

$$\lambda = \min_{y \in \mathbb{C}^n \backslash \{0\}} \frac{\sum_{i \to j} \left| y(i) - \omega_k^{c_{ij}} y(j) \right|^2}{\sum_{i \to j} |y(i)|^2}$$

Let λ be the smallest eigenvalue of $L_{\mathcal{S}}$. By Courant-Fischer,

$$\lambda = \min_{y \in \mathbb{C}^n \backslash \{0\}} \frac{\sum_{i \to j} \left| y(i) - \omega_k^{c_{ij}} y(j) \right|^2}{\sum_{i \to j} |y(i)|^2}$$

Let λ be the smallest eigenvalue of $L_{\mathcal{S}}$. By Courant-Fischer,

$$\lambda = \min_{y \in \mathbb{C}^n \backslash \{0\}} \frac{\sum_{i \to j} \left| y(i) - \omega_k^{c_{ij}} y(j) \right|^2}{\sum_{i \to j} |y(i)|^2}$$

FACT: $\lambda = 0 \iff \mathcal{S}$ has a satisfying assignment

• (\Leftarrow) Suppose ${\mathcal S}$ has a satisfying assignment $\phi:[n] \to [k]$

Let λ be the smallest eigenvalue of L_S . By Courant-Fischer,

$$\lambda = \min_{y \in \mathbb{C}^n \setminus \{0\}} \frac{\sum_{i \to j} \left| y(i) - \omega_k^{c_{ij}} y(j) \right|^2}{\sum_{i \to j} |y(i)|^2}$$

- (\Leftarrow) Suppose ${\mathcal S}$ has a satisfying assignment $\phi:[n]\to[k]$
- Define $y \in \mathbb{C}^n$ such that $y(i) = \omega_k^{\phi(i)}$

Let λ be the smallest eigenvalue of $L_{\mathcal{S}}.$ By Courant-Fischer,

$$\lambda = \min_{y \in \mathbb{C}^n \backslash \{0\}} \frac{\sum_{i \to j} \left| y(i) - \omega_k^{c_{ij}} y(j) \right|^2}{\sum_{i \to j} |y(i)|^2}$$

- (\Leftarrow) Suppose ${\mathcal S}$ has a satisfying assignment $\phi:[n] \to [k]$
- \bullet Define $y\in\mathbb{C}^n$ such that $y(i)=\omega_k^{\phi(i)}$

•
$$\Rightarrow \sum_{i \to j} |y(i) - \omega_k^{c_{ij}} y(j)|^2 = \sum_{i \to j} |\omega_k^{\phi(i)} - \omega_k^{c_{ij} + \phi(j)}|^2 = 0$$

Let λ be the smallest eigenvalue of L_S . By Courant-Fischer,

$$\lambda = \min_{y \in \mathbb{C}^n \backslash \{0\}} \frac{\sum_{i \to j} \left| y(i) - \omega_k^{c_{ij}} y(j) \right|^2}{\sum_{i \to j} |y(i)|^2}$$

- (\Leftarrow) Suppose ${\mathcal S}$ has a satisfying assignment $\phi:[n] \to [k]$
- \bullet Define $y\in\mathbb{C}^n$ such that $y(i)=\omega_k^{\phi(i)}$
- $\Rightarrow \sum_{i \to j} |y(i) \omega_k^{c_{ij}} y(j)|^2 = \sum_{i \to j} \left| \omega_k^{\phi(i)} \omega_k^{c_{ij} + \phi(j)} \right|^2 = 0$
- $\bullet \Rightarrow \lambda = 0 \quad \Box$

Let λ be the smallest eigenvalue of $L_{\mathcal{S}}.$ By Courant-Fischer,

$$\lambda = \min_{y \in \mathbb{C}^n \backslash \{0\}} \frac{\sum_{i \to j} \left| y(i) - \omega_k^{c_{ij}} y(j) \right|^2}{\sum_{i \to j} |y(i)|^2}$$

FACT: $\lambda = 0 \iff \mathcal{S}$ has a satisfying assignment

- (\Leftarrow) Suppose ${\mathcal S}$ has a satisfying assignment $\phi:[n] \to [k]$
- \bullet Define $y\in\mathbb{C}^n$ such that $y(i)=\omega_k^{\phi(i)}$

$$\bullet \Rightarrow \sum_{i \to j} \left| y(i) - \omega_k^{c_{ij}} y(j) \right|^2 = \sum_{i \to j} \left| \omega_k^{\phi(i)} - \omega_k^{c_{ij} + \phi(j)} \right|^2 = 0$$

• $\Rightarrow \lambda = 0$ \square

Can we prove a robust version of this fact?

A Cheeger-type inequality for Max-2-Lin(k)

Let $\mathcal S$ be a system of 2-variable equations modulo k and $\phi:[n]\to[k]\cup\{\bot\}$ a partial assignment.

Let $\mathcal S$ be a system of 2-variable equations modulo k and $\phi:[n]\to[k]\cup\{\bot\}$ a partial assignment.

Let $i \xrightarrow{c_{ij}} j$. We assign a penalty $p_{i,j}^{\phi}$ according to

$$p_{i,j}^{\phi} \triangleq \begin{cases} 1 & \phi(i), \phi(j) \neq 1 \ \land \ \phi(i) - \phi(j) \not\equiv_k c_{ij} \\ 1 & (\phi(i) = \bot \land \phi(j) \neq \bot) \lor (\phi(j) = \bot \land \phi(i) \neq \bot) \\ 0 & \text{o.w.} \end{cases}$$

Let $\mathcal S$ be a system of 2-variable equations modulo k and $\phi:[n]\to[k]\cup\{\bot\}$ a partial assignment.

Let $i \xrightarrow{c_{ij}} j$. We assign a penalty $p_{i,j}^{\phi}$ according to

$$p_{i,j}^{\phi} \triangleq \begin{cases} 1 & \phi(i), \phi(j) \neq 1 \ \land \ \phi(i) - \phi(j) \not\equiv_k c_{ij} \\ 1 & (\phi(i) = \bot \land \phi(j) \neq \bot) \lor (\phi(j) = \bot \land \phi(i) \neq \bot) \\ 0 & \text{o.w.} \end{cases}$$

Unsatisfiability Ratio:
$$u(\phi) \triangleq \frac{\sum_{i \to j} p_{i,j}^{\phi}}{\sum_{i \to j} \mathbf{1}\{\phi(i) \neq \bot\}}$$

Let $\mathcal S$ be a system of 2-variable equations modulo k and $\phi:[n]\to[k]\cup\{\bot\}$ a partial assignment.

Let $i \xrightarrow{c_{ij}} j$. We assign a penalty $p_{i,j}^{\phi}$ according to

$$p_{i,j}^{\phi} \triangleq \begin{cases} 1 & \phi(i), \phi(j) \neq 1 \ \land \ \phi(i) - \phi(j) \not\equiv_k c_{ij} \\ 1 & (\phi(i) = \bot \land \phi(j) \neq \bot) \lor (\phi(j) = \bot \land \phi(i) \neq \bot) \\ 0 & \text{o.w.} \end{cases}$$

Unsatisfiability Ratio:
$$u(\phi) \triangleq \frac{\sum_{i \to j} p_{i,j}^{\phi}}{\sum_{i \to j} \mathbf{1}\{\phi(i) \neq \bot\}}$$

 $u(\phi)$ is close to $0 \iff \phi$ is an "almost satisfying" assignment on a subset of equations that is "almost independent" on the rest of the system.

Let $\mathcal S$ be a system of 2-variable equations modulo k and $\phi:[n]\to [k]\cup \{\bot\}$ a partial assignment.

Let $i \xrightarrow{c_{ij}} j$. We assign a penalty $p_{i,j}^{\phi}$ according to

$$p_{i,j}^{\phi} \triangleq \begin{cases} 1 & \phi(i), \phi(j) \neq 1 \ \land \ \phi(i) - \phi(j) \not\equiv_k c_{ij} \\ 1 & (\phi(i) = \bot \land \phi(j) \neq \bot) \lor (\phi(j) = \bot \land \phi(i) \neq \bot) \\ 0 & \text{o.w.} \end{cases}$$

Unsatisfiability Ratio:
$$u(\phi) \triangleq \frac{\sum_{i \to j} p_{i,j}^{\phi}}{\sum_{i \to j} \mathbf{1}\{\phi(i) \neq \bot\}}$$

 $u(\phi)$ is close to $0 \iff \phi$ is an "almost satisfying" assignment on a subset of equations that is "almost independent" on the rest of the system.

Theorem

Let $\mathcal S$ be a system of 2-variable equations modulo k, and $\lambda(L_{\mathcal S})$ the smallest eigenvalue of its Laplacian. Then,

$$\lambda(L_{\mathcal{S}}) \lesssim \min_{\phi:[n] \to [k] \cup \{\perp\}} u(\phi) \lesssim k\sqrt{\lambda(L_{\mathcal{S}})}$$

Theorem

Let $\mathcal S$ be a system of 2-variable equations modulo k, and $\lambda(L_{\mathcal S})$ the smallest eigenvalue of its Laplacian. Then,

$$\min_{\phi:[n]\to[k]\cup\{\bot\}} u(\phi) \lesssim k\sqrt{\lambda(L_S)}$$

Theorem

Let $\mathcal S$ be a system of 2-variable equations modulo k, and $\lambda(L_{\mathcal S})$ the smallest eigenvalue of its Laplacian. Then,

$$\min_{\phi:[n]\to[k]\cup\{\bot\}} u(\phi) \lesssim k\sqrt{\lambda(L_{\mathcal{S}})}$$

Proof ideas

 We have seen there exists a relation between quadratic forms of the Laplacian and partial assignments

Theorem

Let $\mathcal S$ be a system of 2-variable equations modulo k, and $\lambda(L_{\mathcal S})$ the smallest eigenvalue of its Laplacian. Then,

$$\min_{\phi:[n]\to[k]\cup\{\bot\}} u(\phi) \lesssim k\sqrt{\lambda(L_{\mathcal{S}})}$$

- We have seen there exists a relation between quadratic forms of the Laplacian and partial assignments
- We want to use the eigenvector y corresponding to $\lambda(L_{\mathcal{S}})$ to construct a good partial assignment ϕ

Theorem

Let $\mathcal S$ be a system of 2-variable equations modulo k, and $\lambda(L_{\mathcal S})$ the smallest eigenvalue of its Laplacian. Then,

$$\min_{\phi:[n]\to[k]\cup\{\bot\}} u(\phi) \lesssim k\sqrt{\lambda(L_{\mathcal{S}})}$$

- We have seen there exists a relation between quadratic forms of the Laplacian and partial assignments
- We want to use the eigenvector y corresponding to $\lambda(L_{\mathcal{S}})$ to construct a good partial assignment ϕ
- We need to come up with a rounding procedure

Theorem

Let $\mathcal S$ be a system of 2-variable equations modulo k, and $\lambda(L_{\mathcal S})$ the smallest eigenvalue of its Laplacian. Then,

$$\min_{\phi:[n]\to[k]\cup\{\bot\}} u(\phi) \lesssim k\sqrt{\lambda(L_{\mathcal{S}})}$$

- We have seen there exists a relation between quadratic forms of the Laplacian and partial assignments
- We want to use the eigenvector y corresponding to $\lambda(L_{\mathcal{S}})$ to construct a good partial assignment ϕ
- We need to come up with a rounding procedure
- IDEA: treat $y \colon [n] \to \mathbb{C}$ as an embedding in the complex unit ball

Theorem

Let $\mathcal S$ be a system of 2-variable equations modulo k, and $\lambda(L_{\mathcal S})$ the smallest eigenvalue of its Laplacian. Then,

$$\min_{\phi:[n]\to[k]\cup\{\bot\}} u(\phi) \lesssim k\sqrt{\lambda(L_{\mathcal{S}})}$$

- We have seen there exists a relation between quadratic forms of the Laplacian and partial assignments
- We want to use the eigenvector y corresponding to $\lambda(L_{\mathcal{S}})$ to construct a good partial assignment ϕ
- We need to come up with a rounding procedure
- IDEA: treat $y \colon [n] \to \mathbb{C}$ as an embedding in the complex unit ball
- if $|y(i)| \approx 0$, assign $\phi(i) = \bot$

Theorem

Let $\mathcal S$ be a system of 2-variable equations modulo k, and $\lambda(L_{\mathcal S})$ the smallest eigenvalue of its Laplacian. Then,

$$\min_{\phi:[n]\to[k]\cup\{\bot\}} u(\phi) \lesssim k\sqrt{\lambda(L_{\mathcal{S}})}$$

- We have seen there exists a relation between quadratic forms of the Laplacian and partial assignments
- We want to use the eigenvector y corresponding to $\lambda(L_{\mathcal{S}})$ to construct a good partial assignment ϕ
- We need to come up with a rounding procedure
- IDEA: treat $y \colon [n] \to \mathbb{C}$ as an embedding in the complex unit ball
- if $|y(i)| \approx 0$, assign $\phi(i) = \bot$
- Otherwise, (randomly) divide the complex plane in k regions corresponding to the k possible assignments

Let $y \in \mathbb{C}^n$ be the bottom eigenvector of $L_{\mathcal{S}}$. Assume (w.l.o.g.) $\max_i |y(i)| = 1$. Rounding algorithm:

- Draw $t \in [0,1]$ such that t^2 is distributed uniformly over [0,1]
- ${\color{red} \bullet}$ Set $\phi(i) = \bot$ for any i s.t. |y(i)| < t
- Draw $\eta \in [0, 2\pi/k]$ u.a.r.
- $\bullet \ \, \mathsf{Set} \ \phi(i) = j \ \Longleftrightarrow \ |y(i)| \geq t \wedge \Theta(y(i), \mathrm{e}^{i\eta}) \in [2\pi j/k, 2\pi (j+1)/k)$

Let $y \in \mathbb{C}^n$ be the bottom eigenvector of $L_{\mathcal{S}}$. Assume (w.l.o.g.) $\max_i |y(i)| = 1$. Rounding algorithm:

- Draw $t \in [0,1]$ such that t^2 is distributed uniformly over [0,1]
- Set $\phi(i) = \bot$ for any i s.t. |y(i)| < t
- Draw $\eta \in [0, 2\pi/k]$ u.a.r.
- Set $\phi(i) = j \iff |y(i)| \ge t \land \Theta(y(i), e^{i\eta}) \in [2\pi j/k, 2\pi (j+1)/k)$

- Using the eigenvector corresponding to $\lambda(L_{\mathcal{S}})$ we can find a good partial assignment if one exists

- Using the eigenvector corresponding to $\lambda(L_{\mathcal{S}})$ we can find a good partial assignment if one exists
- Moreover, this partial assignment is defined on a set of variables almost independent from the rest:

- Using the eigenvector corresponding to $\lambda(L_S)$ we can find a good partial assignment if one exists
- Moreover, this partial assignment is defined on a set of variables almost independent from the rest:
- we can recurse on the equations independent from these variables.

- Using the eigenvector corresponding to $\lambda(L_S)$ we can find a good partial assignment if one exists
- Moreover, this partial assignment is defined on a set of variables almost independent from the rest:
- we can recurse on the equations independent from these variables.

If the system is $(1-\epsilon)$ -satisfiable, the algorithm returns a full assignment which satisfies a $(1-O(k)\sqrt{\epsilon})$ -fraction of equations.

- Using the eigenvector corresponding to $\lambda(L_S)$ we can find a good partial assignment if one exists
- Moreover, this partial assignment is defined on a set of variables almost independent from the rest:
- we can recurse on the equations independent from these variables.

If the system is $(1-\epsilon)$ -satisfiable, the algorithm returns a full assignment which satisfies a $(1-O(k)\sqrt{\epsilon})$ -fraction of equations.

Algorithm

INPUT: a system of equations ${\cal S}$

- 1. Compute the eigenvector y corresponding to $\lambda(L_{\mathcal{S}})$
- 2. Apply the rounding procedure to find a partial assignment ϕ
- 3. Let $\operatorname{vol}(\phi) = \sum_{i \to j} \mathbf{1} \{ \phi(i) \neq \bot \}$
- 4. if $u(\phi) \geq (1-1/k)\operatorname{vol}(\phi)$ then Return a full random assignment
- 5. else if ϕ is a full assignment then Return ϕ
- 6. else Recurse on a set of equations defined on variables $\{x_i : \phi(i) = \bot\}$.

Thank you