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The Max-2-Lin(k) problem

We are given a set of m linear equations of the form

xi − xj ≡ cij mod k

Our goal is to find an assignment to {xi}ni=1 maximising the number of satisfied
equations

Facts:

if the system is satisfiable, it is trivial to find a satisfying assignment

otherwise, finding an optimal solution is NP-hard

there exists an SDP-based algorithm that, given a (1− ε)-satisfiable instance,
finds an assignment satisfying a 1−O

(√
ε log k

)
fraction of equations

almost optimal according to the Unique Games Conjecture
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Max-2-Lin(k) and Max-Cut

Suppose we are given a system of equations of the form

xi − xj ≡ 1 mod 2 (i ∼ j)

We can construct a graph G = (V,E):

V = {1, . . . , n}
E = {{i, j} : i ∼ j}

Then,

the system is satisfiable if and only if G is bipartite (i.e., there exists a cut
containing all edges in the graph)

Maximising the number of satisfied equations is equivalent to finding the
largest cut in the graph

Recall: cut = “edges across a bipartition of the vertices”
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Max-Cut and the smallest eigenvalue

Suppose (wlog) G is connected and d-regular

Let A be the adjacency matrix of G

The smallest eigenvalue of A is equal to −d ⇐⇒ G is bipartite

Moreover, the corresponding eigenvector encodes the optimal bipartition

Can we find a robust version of the statement above?

Suppose now G is not bipartite, but a (1− ε)-fraction of the edges lie on a cut.

Is it true that “the smallest eigenvalue of A is close to −(1− ε)d ⇐⇒ there
exists a cut containing a (1− ε)-fraction of the edges”?

Not exactly:

⇐ is still true, but

for the⇒ part we need to be more careful
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Max-Cut and the smallest eigenvalue: Trevisan’s result

Example:

most negative eigenvalue has large absolute value

eig ≈ 1

eig ≈ −1

eig ≈ 0

Trevisan (STOC’09) proved:

smallest eigenvalue is ≤ −(1− ε)d⇒ there exists a subgraph with a cut
containing a (1−O(

√
ε))-fraction of its edges

Algorithm for Max-Cut: use the bottom eigenvector of A to find a subset of
vertices that is “almost” bipartite, and then recurse on the rest of the graph

Q? Can we generalise this framework to arbitrary 2-variable linear systems?
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Enter the Hermitian Laplacian

We are given a system S of linear equations on n variables of the form

xi − xj ≡ cij mod k (i
cij−−→ j)

We define the adjacency operator AS ∈ Cn×n as

AS(i, j) =


ω
cij
k if i

cij−−→ j

ωk
cij if j

cij−−→ i

0 o.w.

where ωk = e2πi/k is the k-th root of unity.
Notice: xi − xj ≡k cij =⇒ xj − xi ≡k −cij and ω

−cij
k = ωk

cij .

KEY FACT: AS is Hermitian⇒ real eigenvalues and orthonormal eigenvectors

We then define the Laplacian operator LS ∈ Cn×n as

LS = I −D−1/2
S ASD

−1/2
S

where DS is diagonal and DS(i, i) =
∑
j |AS(i, j)|.
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Eigenvalues of the Hermitian Laplacian

Let λ be the smallest eigenvalue of LS . By Courant-Fischer,

λ = min
y∈Cn\{0}

∑
i→j

∣∣y(i)− ωcijk y(j)
∣∣2∑

i→j |y(i)|2

FACT: λ = 0 ⇐⇒ S has a satisfying assignment

(⇐) Suppose S has a satisfying assignment φ : [n]→ [k]

Define y ∈ Cn such that y(i) = ω
φ(i)
k

⇒
∑
i→j

∣∣y(i)− ωcijk y(j)
∣∣2 =

∑
i→j

∣∣∣ωφ(i)k − ωcij+φ(j)k

∣∣∣2 = 0

⇒ λ = 0

Can we prove a robust version of this fact?
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A Cheeger-type inequality for Max-2-Lin(k)

Let S be a system of 2-variable equations modulo k and φ : [n]→ [k] ∪ {⊥} a
partial assignment.

Let i
cij−−→ j. We assign a penalty pφi,j according to

pφi,j ,


1 φ(i), φ(j) 6= 1 ∧ φ(i)− φ(j) 6≡k cij
1 (φ(i) = ⊥ ∧ φ(j) 6= ⊥) ∨ (φ(j) = ⊥ ∧ φ(i) 6= ⊥)

0 o.w.

Unsatisfiability Ratio: u(φ) ,

∑
i→j p

φ
i,j∑

i→j 1{φ(i) 6= ⊥}

u(φ) is close to 0 ⇐⇒ φ is an “almost satisfying” assignment on a subset of
equations that is “almost independent” on the rest of the system.

Let S be a system of 2-variable equations modulo k, and λ(LS) the smallest
eigenvalue of its Laplacian. Then,

λ(LS) . min
φ:[n]→[k]∪{⊥}

u(φ) . k
√
λ(LS)

Theorem
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The “harder” direction (1/2)

Let S be a system of 2-variable equations modulo k, and λ(LS) the smallest
eigenvalue of its Laplacian. Then,

min
φ:[n]→[k]∪{⊥}

u(φ) . k
√
λ(LS)

Theorem

Proof ideas

We have seen there exists a relation between quadratic forms of the
Laplacian and partial assignments

We want to use the eigenvector y corresponding to λ(LS) to construct a good
partial assignment φ

We need to come up with a rounding procedure

IDEA: treat y : [n]→ C as an embedding in the complex unit ball

if |y(i)| ≈ 0, assign φ(i) = ⊥
Otherwise, (randomly) divide the complex plane in k regions corresponding to
the k possible assignments
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The “harder” direction (2/2)

Let y ∈ Cn be the bottom eigenvector of LS . Assume (w.l.o.g.) maxi |y(i)| = 1.

Rounding algorithm:

Draw t ∈ [0, 1] such that t2 is distributed uniformly over [0, 1]

Set φ(i) = ⊥ for any i s.t. |y(i)| < t

Draw η ∈ [0, 2π/k] u.a.r.

Set φ(i) = j ⇐⇒ |y(i)| ≥ t ∧Θ(y(i), eiη) ∈ [2πj/k, 2π(j + 1)/k)

η
R←− [0, 2π/k)

t
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Obtaining a full assignment: from local to global

Using the eigenvector corresponding to λ(LS) we can find a good partial
assignment if one exists

Moreover, this partial assignment is defined on a set of variables almost
independent from the rest:

we can recurse on the equations independent from these variables.

If the system is (1− ε)-satisfiable, the algorithm returns a full assignment which
satisfies a (1−O(k)

√
ε)-fraction of equations.

INPUT: a system of equations S
1. Compute the eigenvector y corresponding to λ(LS)

2. Apply the rounding procedure to find a partial assignment φ

3. Let vol(φ) =
∑
i→j 1{φ(i) 6= ⊥}

4. if u(φ) ≥ (1− 1/k) vol(φ) then Return a full random assignment

5. else if φ is a full assignment then Return φ

6. else Recurse on a set of equations defined on variables {xi : φ(i) = ⊥}.

Algorithm
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