Hermitian Laplacians, Cheeger inequalities, and 2 -variable linear equations

Luca Zanetti (Cambridge)

Joint work with Huan Li (Fudan) and He Sun (Edinburgh)

The Max-2-Lin(k) problem

We are given a set of m linear equations of the form

$$
x_{i}-x_{j} \equiv c_{i j} \quad \bmod k
$$

Our goal is to find an assignment to $\left\{x_{i}\right\}_{i=1}^{n}$ maximising the number of satisfied equations

The Max-2-Lin(k) problem

We are given a set of m linear equations of the form

$$
x_{i}-x_{j} \equiv c_{i j} \quad \bmod k
$$

Our goal is to find an assignment to $\left\{x_{i}\right\}_{i=1}^{n}$ maximising the number of satisfied equations

Facts:

- if the system is satisfiable, it is trivial to find a satisfying assignment

The Max-2-Lin(k) problem

We are given a set of m linear equations of the form

$$
x_{i}-x_{j} \equiv c_{i j} \quad \bmod k
$$

Our goal is to find an assignment to $\left\{x_{i}\right\}_{i=1}^{n}$ maximising the number of satisfied equations

Facts:

- if the system is satisfiable, it is trivial to find a satisfying assignment
- otherwise, finding an optimal solution is NP-hard

The Max-2-Lin (k) problem

We are given a set of m linear equations of the form

$$
x_{i}-x_{j} \equiv c_{i j} \quad \bmod k
$$

Our goal is to find an assignment to $\left\{x_{i}\right\}_{i=1}^{n}$ maximising the number of satisfied equations

Facts:

- if the system is satisfiable, it is trivial to find a satisfying assignment
- otherwise, finding an optimal solution is NP-hard
- there exists an SDP-based algorithm that, given a $(1-\epsilon)$-satisfiable instance, finds an assignment satisfying a $1-O(\sqrt{\epsilon \log k})$ fraction of equations
- almost optimal according to the Unique Games Conjecture

Max-2-Lin(k) and Max-Cut

Suppose we are given a system of equations of the form

$$
x_{i}-x_{j} \equiv 1 \quad \bmod 2 \quad(i \sim j)
$$

Max-2-Lin(k) and Max-Cut

Suppose we are given a system of equations of the form

$$
x_{i}-x_{j} \equiv 1 \quad \bmod 2 \quad(i \sim j)
$$

We can construct a graph $G=(V, E)$:

- $V=\{1, \ldots, n\}$
- $E=\{\{i, j\}: i \sim j\}$

Max-2-Lin(k) and Max-Cut

Suppose we are given a system of equations of the form

$$
x_{i}-x_{j} \equiv 1 \quad \bmod 2 \quad(i \sim j)
$$

We can construct a graph $G=(V, E)$:

- $V=\{1, \ldots, n\}$
- $E=\{\{i, j\}: i \sim j\}$

Then,

- the system is satisfiable if and only if G is bipartite (i.e., there exists a cut containing all edges in the graph)

Max-2-Lin(k) and Max-Cut

Suppose we are given a system of equations of the form

$$
x_{i}-x_{j} \equiv 1 \quad \bmod 2 \quad(i \sim j)
$$

We can construct a graph $G=(V, E)$:

- $V=\{1, \ldots, n\}$
- $E=\{\{i, j\}: i \sim j\}$

Then,

- the system is satisfiable if and only if G is bipartite (i.e., there exists a cut containing all edges in the graph)
- Maximising the number of satisfied equations is equivalent to finding the largest cut in the graph

Recall: cut = "edges across a bipartition of the vertices"

Max-Cut and the smallest eigenvalue

Suppose (wlog) G is connected and d-regular

- Let A be the adjacency matrix of G

Max-Cut and the smallest eigenvalue

Suppose (wlog) G is connected and d-regular

- Let A be the adjacency matrix of G
- The smallest eigenvalue of A is equal to $-d \Longleftrightarrow G$ is bipartite

Max-Cut and the smallest eigenvalue

Suppose (wlog) G is connected and d-regular

- Let A be the adjacency matrix of G
- The smallest eigenvalue of A is equal to $-d \Longleftrightarrow G$ is bipartite
- Moreover, the corresponding eigenvector encodes the optimal bipartition

Max-Cut and the smallest eigenvalue

Suppose (wlog) G is connected and d-regular

- Let A be the adjacency matrix of G
- The smallest eigenvalue of A is equal to $-d \Longleftrightarrow G$ is bipartite
- Moreover, the corresponding eigenvector encodes the optimal bipartition

Max-Cut and the smallest eigenvalue

Suppose (wlog) G is connected and d-regular

- Let A be the adjacency matrix of G
- The smallest eigenvalue of A is equal to $-d \Longleftrightarrow G$ is bipartite
- Moreover, the corresponding eigenvector encodes the optimal bipartition

Can we find a robust version of the statement above?

Max-Cut and the smallest eigenvalue

Suppose (wlog) G is connected and d-regular

- Let A be the adjacency matrix of G
- The smallest eigenvalue of A is equal to $-d \Longleftrightarrow G$ is bipartite
- Moreover, the corresponding eigenvector encodes the optimal bipartition

Can we find a robust version of the statement above?

- Suppose now G is not bipartite, but a $(1-\epsilon)$-fraction of the edges lie on a cut.

Max-Cut and the smallest eigenvalue

Suppose (wlog) G is connected and d-regular

- Let A be the adjacency matrix of G
- The smallest eigenvalue of A is equal to $-d \Longleftrightarrow G$ is bipartite
- Moreover, the corresponding eigenvector encodes the optimal bipartition

Can we find a robust version of the statement above?

- Suppose now G is not bipartite, but a $(1-\epsilon)$-fraction of the edges lie on a cut.
- Is it true that "the smallest eigenvalue of A is close to $-(1-\epsilon) d \Longleftrightarrow$ there exists a cut containing a $(1-\epsilon)$-fraction of the edges"?

Max-Cut and the smallest eigenvalue

Suppose (wlog) G is connected and d-regular

- Let A be the adjacency matrix of G
- The smallest eigenvalue of A is equal to $-d \Longleftrightarrow G$ is bipartite
- Moreover, the corresponding eigenvector encodes the optimal bipartition

Can we find a robust version of the statement above?

- Suppose now G is not bipartite, but a $(1-\epsilon)$-fraction of the edges lie on a cut.
- Is it true that "the smallest eigenvalue of A is close to $-(1-\epsilon) d \Longleftrightarrow$ there exists a cut containing a $(1-\epsilon)$-fraction of the edges"?

Not exactly:

- \Leftarrow is still true, but

Max-Cut and the smallest eigenvalue

Suppose (wlog) G is connected and d-regular

- Let A be the adjacency matrix of G
- The smallest eigenvalue of A is equal to $-d \Longleftrightarrow G$ is bipartite
- Moreover, the corresponding eigenvector encodes the optimal bipartition

Can we find a robust version of the statement above?

- Suppose now G is not bipartite, but a $(1-\epsilon)$-fraction of the edges lie on a cut.
- Is it true that "the smallest eigenvalue of A is close to $-(1-\epsilon) d \Longleftrightarrow$ there exists a cut containing a $(1-\epsilon)$-fraction of the edges"?

Not exactly:

- \Leftarrow is still true, but
- for the \Rightarrow part we need to be more careful

Max-Cut and the smallest eigenvalue: Trevisan's result

Example:

Max-Cut and the smallest eigenvalue: Trevisan's result

Example: most negative eigenvalue has large absolute value

Max-Cut and the smallest eigenvalue: Trevisan's result

Example: most negative eigenvalue has large absolute value

Trevisan (STOC'09) proved:

- smallest eigenvalue is $\leq-(1-\epsilon) d \Rightarrow$ there exists a subgraph with a cut containing a $(1-O(\sqrt{\epsilon})$)-fraction of its edges

Max-Cut and the smallest eigenvalue: Trevisan's result

Example: most negative eigenvalue has large absolute value

Trevisan (STOC'09) proved:

- smallest eigenvalue is $\leq-(1-\epsilon) d \Rightarrow$ there exists a subgraph with a cut containing a $(1-O(\sqrt{\epsilon}))$-fraction of its edges
- Algorithm for Max-Cut: use the bottom eigenvector of A to find a subset of vertices that is "almost" bipartite, and then recurse on the rest of the graph

Max-Cut and the smallest eigenvalue: Trevisan's result

Example: most negative eigenvalue has large absolute value

- eig ≈ 1
- eig ≈-1
\bigcirc eig ≈ 0

Trevisan (STOC'09) proved:

- smallest eigenvalue is $\leq-(1-\epsilon) d \Rightarrow$ there exists a subgraph with a cut containing a $(1-O(\sqrt{\epsilon}))$-fraction of its edges
- Algorithm for Max-Cut: use the bottom eigenvector of A to find a subset of vertices that is "almost" bipartite, and then recurse on the rest of the graph

Q? Can we generalise this framework to arbitrary 2-variable linear systems?

Enter the Hermitian Laplacian

We are given a system \mathcal{S} of linear equations on n variables of the form

$$
x_{i}-x_{j} \equiv c_{i j} \quad \bmod k \quad\left(i \xrightarrow{c_{i j}} j\right)
$$

Enter the Hermitian Laplacian

We are given a system \mathcal{S} of linear equations on n variables of the form

$$
x_{i}-x_{j} \equiv c_{i j} \quad \bmod k \quad\left(i \xrightarrow{c_{i j}} j\right)
$$

We define the adjacency operator $A_{\mathcal{S}} \in \mathbb{C}^{n \times n}$ as

$$
A_{\mathcal{S}}(i, j)= \begin{cases}\omega_{k}^{c_{i j}} & \text { if } i \xrightarrow{c_{i j}} j \\ \overline{\omega k}^{c_{i j}} & \text { if } j \xrightarrow{c_{i j}} i \\ 0 & \text { o.w. }\end{cases}
$$

where $\omega_{k}=\mathrm{e}^{2 \pi i / k}$ is the k-th root of unity.

Enter the Hermitian Laplacian

We are given a system \mathcal{S} of linear equations on n variables of the form

$$
x_{i}-x_{j} \equiv c_{i j} \quad \bmod k \quad\left(i \xrightarrow{c_{i j}} j\right)
$$

We define the adjacency operator $A_{\mathcal{S}} \in \mathbb{C}^{n \times n}$ as

$$
A_{\mathcal{S}}(i, j)= \begin{cases}\omega_{k}^{c_{i j}} & \text { if } i \xrightarrow{c_{i j}} j \\ \overline{\omega k}^{c_{i j}} & \text { if } j \xrightarrow{c_{i j}} i \\ 0 & \text { o.w. }\end{cases}
$$

where $\omega_{k}=\mathrm{e}^{2 \pi i / k}$ is the k-th root of unity.
Notice: $x_{i}-x_{j} \equiv_{k} c_{i j} \Longrightarrow x_{j}-x_{i} \equiv_{k}-c_{i j}$ and $\omega_{k}^{-c_{i j}}={\overline{\omega_{k}}}^{c_{i j}}$.

Enter the Hermitian Laplacian

We are given a system \mathcal{S} of linear equations on n variables of the form

$$
x_{i}-x_{j} \equiv c_{i j} \quad \bmod k \quad\left(i \xrightarrow{c_{i j}} j\right)
$$

We define the adjacency operator $A_{\mathcal{S}} \in \mathbb{C}^{n \times n}$ as

$$
A_{\mathcal{S}}(i, j)= \begin{cases}\omega_{k}^{c_{i j}} & \text { if } i \xrightarrow{c_{i j}} j \\ \overline{\omega k}^{c_{i j}} & \text { if } j \xrightarrow{c_{i j}} i \\ 0 & \text { o.w. }\end{cases}
$$

where $\omega_{k}=\mathrm{e}^{2 \pi i / k}$ is the k-th root of unity.
Notice: $x_{i}-x_{j} \equiv_{k} c_{i j} \Longrightarrow x_{j}-x_{i} \equiv_{k}-c_{i j}$ and $\omega_{k}^{-c_{i j}}={\overline{\omega_{k}}}^{c_{i j}}$.
KEY FACT: $A_{\mathcal{S}}$ is Hermitian \Rightarrow real eigenvalues and orthonormal eigenvectors

Enter the Hermitian Laplacian

We are given a system \mathcal{S} of linear equations on n variables of the form

$$
x_{i}-x_{j} \equiv c_{i j} \quad \bmod k \quad\left(i \xrightarrow{c_{i j}} j\right)
$$

We define the adjacency operator $A_{\mathcal{S}} \in \mathbb{C}^{n \times n}$ as

$$
A_{\mathcal{S}}(i, j)= \begin{cases}\omega_{k}^{c_{i j}} & \text { if } i \xrightarrow{c_{i j}} j \\ \overline{\omega k}^{c_{i j}} & \text { if } j \xrightarrow{c_{i j}} i \\ 0 & \text { o.w. }\end{cases}
$$

where $\omega_{k}=\mathrm{e}^{2 \pi i / k}$ is the k-th root of unity.
Notice: $x_{i}-x_{j} \equiv_{k} c_{i j} \Longrightarrow x_{j}-x_{i} \equiv_{k}-c_{i j}$ and $\omega_{k}^{-c_{i j}}={\overline{\omega_{k}}}^{c_{i j}}$.
KEY FACT: $A_{\mathcal{S}}$ is Hermitian \Rightarrow real eigenvalues and orthonormal eigenvectors
We then define the Laplacian operator $L_{\mathcal{S}} \in \mathbb{C}^{n \times n}$ as

$$
L_{\mathcal{S}}=I-D_{\mathcal{S}}^{-1 / 2} A_{\mathcal{S}} D_{\mathcal{S}}^{-1 / 2}
$$

where $D_{\mathcal{S}}$ is diagonal and $D_{\mathcal{S}}(i, i)=\sum_{j}\left|A_{\mathcal{S}}(i, j)\right|$.

Eigenvalues of the Hermitian Laplacian

Let λ be the smallest eigenvalue of $L_{\mathcal{S}}$. By Courant-Fischer,

$$
\lambda=\min _{y \in \mathbb{C}^{n} \backslash\{0\}} \frac{\sum_{i \rightarrow j}\left|y(i)-\omega_{k}^{c_{i j}} y(j)\right|^{2}}{\sum_{i \rightarrow j}|y(i)|^{2}}
$$

Eigenvalues of the Hermitian Laplacian

Let λ be the smallest eigenvalue of $L_{\mathcal{S}}$. By Courant-Fischer,

$$
\lambda=\min _{y \in \mathbb{C}^{n} \backslash\{0\}} \frac{\sum_{i \rightarrow j}\left|y(i)-\omega_{k}^{c_{i j}} y(j)\right|^{2}}{\sum_{i \rightarrow j}|y(i)|^{2}}
$$

FACT: $\lambda=0 \Longleftrightarrow \mathcal{S}$ has a satisfying assignment

Eigenvalues of the Hermitian Laplacian

Let λ be the smallest eigenvalue of $L_{\mathcal{S}}$. By Courant-Fischer,

$$
\lambda=\min _{y \in \mathbb{C}^{n} \backslash\{0\}} \frac{\sum_{i \rightarrow j}\left|y(i)-\omega_{k}^{c_{i j}} y(j)\right|^{2}}{\sum_{i \rightarrow j}|y(i)|^{2}}
$$

FACT: $\lambda=0 \Longleftrightarrow \mathcal{S}$ has a satisfying assignment

- (\Leftarrow) Suppose \mathcal{S} has a satisfying assignment $\phi:[n] \rightarrow[k]$

Eigenvalues of the Hermitian Laplacian

Let λ be the smallest eigenvalue of $L_{\mathcal{S}}$. By Courant-Fischer,

$$
\lambda=\min _{y \in \mathbb{C}^{n} \backslash\{0\}} \frac{\sum_{i \rightarrow j}\left|y(i)-\omega_{k}^{c_{i j}} y(j)\right|^{2}}{\sum_{i \rightarrow j}|y(i)|^{2}}
$$

FACT: $\lambda=0 \Longleftrightarrow \mathcal{S}$ has a satisfying assignment

- (\Leftarrow) Suppose \mathcal{S} has a satisfying assignment $\phi:[n] \rightarrow[k]$
- Define $y \in \mathbb{C}^{n}$ such that $y(i)=\omega_{k}^{\phi(i)}$

Eigenvalues of the Hermitian Laplacian

Let λ be the smallest eigenvalue of $L_{\mathcal{S}}$. By Courant-Fischer,

$$
\lambda=\min _{y \in \mathbb{C}^{n} \backslash\{0\}} \frac{\sum_{i \rightarrow j}\left|y(i)-\omega_{k}^{c_{i j}} y(j)\right|^{2}}{\sum_{i \rightarrow j}|y(i)|^{2}}
$$

FACT: $\lambda=0 \Longleftrightarrow \mathcal{S}$ has a satisfying assignment

- (\Leftarrow) Suppose \mathcal{S} has a satisfying assignment $\phi:[n] \rightarrow[k]$
- Define $y \in \mathbb{C}^{n}$ such that $y(i)=\omega_{k}^{\phi(i)}$
- $\Rightarrow \sum_{i \rightarrow j}\left|y(i)-\omega_{k}^{c_{i j}} y(j)\right|^{2}=\sum_{i \rightarrow j}\left|\omega_{k}^{\phi(i)}-\omega_{k}^{c_{i j}+\phi(j)}\right|^{2}=0$

Eigenvalues of the Hermitian Laplacian

Let λ be the smallest eigenvalue of $L_{\mathcal{S}}$. By Courant-Fischer,

$$
\lambda=\min _{y \in \mathbb{C}^{n} \backslash\{0\}} \frac{\sum_{i \rightarrow j}\left|y(i)-\omega_{k}^{c_{i j}} y(j)\right|^{2}}{\sum_{i \rightarrow j}|y(i)|^{2}}
$$

FACT: $\lambda=0 \Longleftrightarrow \mathcal{S}$ has a satisfying assignment

- (\Leftarrow) Suppose \mathcal{S} has a satisfying assignment $\phi:[n] \rightarrow[k]$
- Define $y \in \mathbb{C}^{n}$ such that $y(i)=\omega_{k}^{\phi(i)}$
- $\Rightarrow \sum_{i \rightarrow j}\left|y(i)-\omega_{k}^{c_{i j}} y(j)\right|^{2}=\sum_{i \rightarrow j}\left|\omega_{k}^{\phi(i)}-\omega_{k}^{c_{i j}+\phi(j)}\right|^{2}=0$
- $\Rightarrow \lambda=0 \quad \square$

Eigenvalues of the Hermitian Laplacian

Let λ be the smallest eigenvalue of $L_{\mathcal{S}}$. By Courant-Fischer,

$$
\lambda=\min _{y \in \mathbb{C}^{n} \backslash\{0\}} \frac{\sum_{i \rightarrow j}\left|y(i)-\omega_{k}^{c_{i j}} y(j)\right|^{2}}{\sum_{i \rightarrow j}|y(i)|^{2}}
$$

FACT: $\lambda=0 \Longleftrightarrow \mathcal{S}$ has a satisfying assignment

- (\Leftarrow) Suppose \mathcal{S} has a satisfying assignment $\phi:[n] \rightarrow[k]$
- Define $y \in \mathbb{C}^{n}$ such that $y(i)=\omega_{k}^{\phi(i)}$
- $\Rightarrow \sum_{i \rightarrow j}\left|y(i)-\omega_{k}^{c_{i j}} y(j)\right|^{2}=\sum_{i \rightarrow j}\left|\omega_{k}^{\phi(i)}-\omega_{k}^{c_{i j}+\phi(j)}\right|^{2}=0$
- $\Rightarrow \lambda=0 \quad \square$

Can we prove a robust version of this fact?

A Cheeger-type inequality for Max-2-Lin(k)

Let \mathcal{S} be a system of 2-variable equations modulo k and $\phi:[n] \rightarrow[k] \cup\{\perp\}$ a partial assignment.

A Cheeger-type inequality for Max-2-Lin(k)

Let \mathcal{S} be a system of 2-variable equations modulo k and $\phi:[n] \rightarrow[k] \cup\{\perp\}$ a partial assignment.
Let $i \xrightarrow{c_{i j}} j$. We assign a penalty $p_{i, j}^{\phi}$ according to

$$
p_{i, j}^{\phi} \triangleq \begin{cases}1 & \phi(i), \phi(j) \neq 1 \wedge \phi(i)-\phi(j) \not 三_{k} c_{i j} \\ 1 & (\phi(i)=\perp \wedge \phi(j) \neq \perp) \vee(\phi(j)=\perp \wedge \phi(i) \neq \perp) \\ 0 & \text { o.w. }\end{cases}
$$

A Cheeger-type inequality for Max-2-Lin(k)

Let \mathcal{S} be a system of 2-variable equations modulo k and $\phi:[n] \rightarrow[k] \cup\{\perp\}$ a partial assignment.
Let $i \xrightarrow{c_{i j}} j$. We assign a penalty $p_{i, j}^{\phi}$ according to

$$
p_{i, j}^{\phi} \triangleq \begin{cases}1 & \phi(i), \phi(j) \neq 1 \wedge \phi(i)-\phi(j) \not 三_{k} c_{i j} \\ 1 & (\phi(i)=\perp \wedge \phi(j) \neq \perp) \vee(\phi(j)=\perp \wedge \phi(i) \neq \perp) \\ 0 & \text { o.w. }\end{cases}
$$

Unsatisfiability Ratio: $\quad u(\phi) \triangleq \frac{\sum_{i \rightarrow j} p_{i, j}^{\phi}}{\sum_{i \rightarrow j} \mathbf{1}\{\phi(i) \neq \perp\}}$

A Cheeger-type inequality for Max-2-Lin(k)

Let \mathcal{S} be a system of 2-variable equations modulo k and $\phi:[n] \rightarrow[k] \cup\{\perp\}$ a partial assignment.

Let $i \xrightarrow{c_{i j}} j$. We assign a penalty $p_{i, j}^{\phi}$ according to

$$
p_{i, j}^{\phi} \triangleq \begin{cases}1 & \phi(i), \phi(j) \neq 1 \wedge \phi(i)-\phi(j) \not \equiv k_{k} c_{i j} \\ 1 & (\phi(i)=\perp \wedge \phi(j) \neq \perp) \vee(\phi(j)=\perp \wedge \phi(i) \neq \perp) \\ 0 & \text { o.w. }\end{cases}
$$

Unsatisfiability Ratio: $\quad u(\phi) \triangleq \frac{\sum_{i \rightarrow j} p_{i, j}^{\phi}}{\sum_{i \rightarrow j} \mathbf{1}\{\phi(i) \neq \perp\}}$
$u(\phi)$ is close to $0 \Longleftrightarrow \phi$ is an "almost satisfying" assignment on a subset of equations that is "almost independent" on the rest of the system.

A Cheeger-type inequality for Max-2-Lin(k)

Let \mathcal{S} be a system of 2-variable equations modulo k and $\phi:[n] \rightarrow[k] \cup\{\perp\}$ a partial assignment.

Let $i \xrightarrow{c_{i j}} j$. We assign a penalty $p_{i, j}^{\phi}$ according to

$$
p_{i, j}^{\phi} \triangleq \begin{cases}1 & \phi(i), \phi(j) \neq 1 \wedge \phi(i)-\phi(j) \not \equiv k_{k} c_{i j} \\ 1 & (\phi(i)=\perp \wedge \phi(j) \neq \perp) \vee(\phi(j)=\perp \wedge \phi(i) \neq \perp) \\ 0 & \text { o.w. }\end{cases}
$$

Unsatisfiability Ratio: $\quad u(\phi) \triangleq \frac{\sum_{i \rightarrow j} p_{i, j}^{\phi}}{\sum_{i \rightarrow j} \mathbf{1}\{\phi(i) \neq \perp\}}$
$u(\phi)$ is close to $0 \Longleftrightarrow \phi$ is an "almost satisfying" assignment on a subset of equations that is "almost independent" on the rest of the system.

Theorem

Let \mathcal{S} be a system of 2-variable equations modulo k, and $\lambda\left(L_{\mathcal{S}}\right)$ the smallest eigenvalue of its Laplacian. Then,

$$
\lambda\left(L_{\mathcal{S}}\right) \lesssim \min _{\phi:[n] \rightarrow[k] \cup\{\perp\}} u(\phi) \lesssim k \sqrt{\lambda\left(L_{\mathcal{S}}\right)}
$$

The "harder" direction (1/2)

Theorem
Let \mathcal{S} be a system of 2-variable equations modulo k, and $\lambda\left(L_{\mathcal{S}}\right)$ the smallest eigenvalue of its Laplacian. Then,

$$
\min _{\phi:[n] \rightarrow[k] \cup\{\perp\}} u(\phi) \lesssim k \sqrt{\lambda\left(L_{\mathcal{S}}\right)}
$$

The "harder" direction (1/2)

Theorem
Let \mathcal{S} be a system of 2 -variable equations modulo k, and $\lambda\left(L_{\mathcal{S}}\right)$ the smallest eigenvalue of its Laplacian. Then,

$$
\min _{\phi:[n] \rightarrow[k] \cup\{\perp\}} u(\phi) \lesssim k \sqrt{\lambda\left(L_{\mathcal{S}}\right)}
$$

Proof ideas

- We have seen there exists a relation between quadratic forms of the Laplacian and partial assignments

The "harder" direction (1/2)

Theorem

Let \mathcal{S} be a system of 2 -variable equations modulo k, and $\lambda\left(L_{\mathcal{S}}\right)$ the smallest eigenvalue of its Laplacian. Then,

$$
\min _{\phi:[n] \rightarrow[k] \cup\{\perp\}} u(\phi) \lesssim k \sqrt{\lambda\left(L_{\mathcal{S}}\right)}
$$

Proof ideas

- We have seen there exists a relation between quadratic forms of the Laplacian and partial assignments
- We want to use the eigenvector y corresponding to $\lambda\left(L_{\mathcal{S}}\right)$ to construct a good partial assignment ϕ

The "harder" direction (1/2)

Theorem

Let \mathcal{S} be a system of 2 -variable equations modulo k, and $\lambda\left(L_{\mathcal{S}}\right)$ the smallest eigenvalue of its Laplacian. Then,

$$
\min _{\phi:[n] \rightarrow[k] \cup\{\perp\}} u(\phi) \lesssim k \sqrt{\lambda\left(L_{\mathcal{S}}\right)}
$$

Proof ideas

- We have seen there exists a relation between quadratic forms of the Laplacian and partial assignments
- We want to use the eigenvector y corresponding to $\lambda\left(L_{\mathcal{S}}\right)$ to construct a good partial assignment ϕ
- We need to come up with a rounding procedure

The "harder" direction (1/2)

Theorem

Let \mathcal{S} be a system of 2 -variable equations modulo k, and $\lambda\left(L_{\mathcal{S}}\right)$ the smallest eigenvalue of its Laplacian. Then,

$$
\min _{\phi:[n] \rightarrow[k] \cup\{\perp\}} u(\phi) \lesssim k \sqrt{\lambda\left(L_{\mathcal{S}}\right)}
$$

Proof ideas

- We have seen there exists a relation between quadratic forms of the Laplacian and partial assignments
- We want to use the eigenvector y corresponding to $\lambda\left(L_{\mathcal{S}}\right)$ to construct a good partial assignment ϕ
- We need to come up with a rounding procedure
- IDEA: treat $y:[n] \rightarrow \mathbb{C}$ as an embedding in the complex unit ball

The "harder" direction (1/2)

Theorem

Let \mathcal{S} be a system of 2 -variable equations modulo k, and $\lambda\left(L_{\mathcal{S}}\right)$ the smallest eigenvalue of its Laplacian. Then,

$$
\min _{\phi:[n] \rightarrow[k] \cup\{\perp\}} u(\phi) \lesssim k \sqrt{\lambda\left(L_{\mathcal{S}}\right)}
$$

Proof ideas

- We have seen there exists a relation between quadratic forms of the Laplacian and partial assignments
- We want to use the eigenvector y corresponding to $\lambda\left(L_{\mathcal{S}}\right)$ to construct a good partial assignment ϕ
- We need to come up with a rounding procedure
- IDEA: treat $y:[n] \rightarrow \mathbb{C}$ as an embedding in the complex unit ball
- if $|y(i)| \approx 0$, assign $\phi(i)=\perp$

The "harder" direction (1/2)

Theorem

Let \mathcal{S} be a system of 2 -variable equations modulo k, and $\lambda\left(L_{\mathcal{S}}\right)$ the smallest eigenvalue of its Laplacian. Then,

$$
\min _{\phi:[n] \rightarrow[k] \cup\{\perp\}} u(\phi) \lesssim k \sqrt{\lambda\left(L_{\mathcal{S}}\right)}
$$

Proof ideas

- We have seen there exists a relation between quadratic forms of the Laplacian and partial assignments
- We want to use the eigenvector y corresponding to $\lambda\left(L_{\mathcal{S}}\right)$ to construct a good partial assignment ϕ
- We need to come up with a rounding procedure
- IDEA: treat $y:[n] \rightarrow \mathbb{C}$ as an embedding in the complex unit ball
- if $|y(i)| \approx 0$, assign $\phi(i)=\perp$
- Otherwise, (randomly) divide the complex plane in k regions corresponding to the k possible assignments

The "harder" direction (2/2)

Let $y \in \mathbb{C}^{n}$ be the bottom eigenvector of $L_{\mathcal{S}}$. Assume (w.l.o.g.) $\max _{i}|y(i)|=1$.
Rounding algorithm:

- Draw $t \in[0,1]$ such that t^{2} is distributed uniformly over $[0,1]$
- Set $\phi(i)=\perp$ for any i s.t. $|y(i)|<t$
- Draw $\eta \in[0,2 \pi / k]$ u.a.r.
- Set $\phi(i)=j \Longleftrightarrow|y(i)| \geq t \wedge \Theta\left(y(i), \mathrm{e}^{i \eta}\right) \in[2 \pi j / k, 2 \pi(j+1) / k)$

The "harder" direction (2/2)
Let $y \in \mathbb{C}^{n}$ be the bottom eigenvector of $L_{\mathcal{S}}$. Assume (w.l.o.g.) $\max _{i}|y(i)|=1$.
Rounding algorithm:

- Draw $t \in[0,1]$ such that t^{2} is distributed uniformly over $[0,1]$
- Set $\phi(i)=\perp$ for any i s.t. $|y(i)|<t$
- Draw $\eta \in[0,2 \pi / k]$ u.a.r.
- Set $\phi(i)=j \Longleftrightarrow|y(i)| \geq t \wedge \Theta\left(y(i), \mathrm{e}^{i \eta}\right) \in[2 \pi j / k, 2 \pi(j+1) / k)$

Obtaining a full assignment: from local to global

- Using the eigenvector corresponding to $\lambda\left(L_{\mathcal{S}}\right)$ we can find a good partial assignment if one exists

Obtaining a full assignment: from local to global

- Using the eigenvector corresponding to $\lambda\left(L_{\mathcal{S}}\right)$ we can find a good partial assignment if one exists
- Moreover, this partial assignment is defined on a set of variables almost independent from the rest:

Obtaining a full assignment: from local to global

- Using the eigenvector corresponding to $\lambda\left(L_{\mathcal{S}}\right)$ we can find a good partial assignment if one exists
- Moreover, this partial assignment is defined on a set of variables almost independent from the rest:
- we can recurse on the equations independent from these variables.

Obtaining a full assignment: from local to global

- Using the eigenvector corresponding to $\lambda\left(L_{\mathcal{S}}\right)$ we can find a good partial assignment if one exists
- Moreover, this partial assignment is defined on a set of variables almost independent from the rest:
- we can recurse on the equations independent from these variables.

If the system is $(1-\epsilon)$-satisfiable, the algorithm returns a full assignment which satisfies a $(1-O(k) \sqrt{\epsilon})$-fraction of equations.

Obtaining a full assignment: from local to global

- Using the eigenvector corresponding to $\lambda\left(L_{\mathcal{S}}\right)$ we can find a good partial assignment if one exists
- Moreover, this partial assignment is defined on a set of variables almost independent from the rest:
- we can recurse on the equations independent from these variables.

If the system is $(1-\epsilon)$-satisfiable, the algorithm returns a full assignment which satisfies a (1-O(k) $\sqrt{\epsilon}$)-fraction of equations.

InPUT: a system of equations \mathcal{S}

1. Compute the eigenvector y corresponding to $\lambda\left(L_{\mathcal{S}}\right)$
2. Apply the rounding procedure to find a partial assignment ϕ
3. Let $\operatorname{vol}(\phi)=\sum_{i \rightarrow j} \mathbf{1}\{\phi(i) \neq \perp\}$
4. if $u(\phi) \geq(1-1 / k) \operatorname{vol}(\phi)$ then Return a full random assignment
5. else if ϕ is a full assignment then Return ϕ
6. else Recurse on a set of equations defined on variables $\left\{x_{i}: \phi(i)=\perp\right\}$.

Thank you

