Design for Dependability

Massimo Felici
LFCS, Division of Informatics, The University of Edinburgh

19 July 2001, ITC-IRST/ ARS, Trento, Italy

http://www.dirc.org.uk
Interdisciplinary Research Collaboration in Dependability of Computer-Based Systems

http://www.dirc.org.uk

Research Themes
- Structure
- Diversity
- Timeliness
- Responsibility
- Risk

Project Activities
- Dependable Human Interaction in Real-time Systems
- Design for Dependability
- Impact of Organisational Culture and Trust on Dependability
- Decision Support for Dependability
- Dependability in Open-source Software
Overview: What you will see…

An invitation to discuss Design for complex organisational settings

- *Design for Dependability*: Aim & Work Items
- Competence of the team
- Core issues under investigation about *Design*
- Overview of the work being carried out
- Questions raised
What you will not see...

- A tutorial about Design
- A detailed presentation of work in Design for Dependability
- A list of references
Design for Dependability
Aim & Work Items

To develop design techniques for dependability of distributed, heterogeneous, computer-based systems in complex organisational settings.

- Characterising dependability
- Evolution in complex organisations
- Structures, processes, components
- Evidence centred design

Massimo Felici
Team Competence: 9 Researchers

- Gillian Hardstone
- Massimo Felici
- Corin Gurr
- Alexander Voss

- Denis Besnard
- Jo Mackie
- David Martin
- Stephen Viller
- Andrey Povyakalo

- Complex organisations
- Requirements Engineering & Software Metrics
- Cognitive and Semantic aspects of Representations
- Social Learning and systems development

- Cognitive Ergonomics
- IT technologies
- Ethnography
- Requirements Engineering

- Formal safety analysis in dynamic systems
Characterising Dependability

- Based on empirical work (healthcare focus)
- Investigating sources of undependability
- Using patterns to capture beneficial forms of cooperation from empirical data
Healthcare System Failures

Three issues identified in the study of system failures

Designers aware of factors not included in requirements documentation

1. What is meant by a medical device?
 - anything that is used in a medical situation (HW + SW)

2. Different types of system failures to characterise:
 - non delivery of expected service
 - incorrect delivery of the expected service
 - delivery of incorrect service

3. Different types of healthcare system considered:
 - resource allocation systems
 - medical devices
 - information systems

Cases studied so far:
 - London ambulances system failure
 - Therac 25
 - Various medical records
Healthcare System Failures

Recommendations

- Electronic and paper versions should be designed to co-exist
- Data must be conceived with understanding of the situation of use

Further Work

- Addressing the problem of a lack of situation information available to engineers
- Including situation information into the design process
- Situation modelling

Massimo Felici
Patterns of Cooperative Interaction for Dependability

Patterns of cooperative work

Informing the design of socio-technical systems

Ecological arrangement

Representation of activity

Spatial characteristics

Coordination techniques

How is distributed cooperation achieved?

Fieldwork Activity

Cooperative arrangement

Actors and resources

e.g., plans or technology?

Community of use

Capturing data about the user group

Massimo Felici
(Re)examination of (previous) studies

Patterns as *grossly observable* features

Descriptive rather than design patterns

Within and across studies

Moving from empirical studies to general design resource

Massimo Felici
Patterns of Cooperative Interaction for Dependability

Further work

- Generating and validating more patterns
- Handling large amounts of patterns: generic descriptions, indexing, etc.
- Structures & taxonomies of patterns
- Patterns for dependability
 - Healthcare, control room studies
 - Configurations that work can illustrate good practice

Massimo Felici
Evolution in Complex Organisations

- *Change* is a fertile source of *undependability*

- *Evolution* seems highly *domain specific*

- *Empirical work* based on case studies
 - Avionics
 - Smart card

- *Focus on Requirements Evolution*
Requirements Evolution

Design for Dependability + Requirements Evolution = Dependable Requirements Evolution

- Process viewpoint - A dependable process supporting Requirements Evolution

- Product viewpoint - Requirements Evolution addressing system dependability
Requirements Evolution

Empirical framework for requirements evolution

Many models! Integration needs to be a dependable process

Formal framework for requirements evolution

A graphical model representing requirements evolution:
- Easy to understand
- Easy to analyse
- Permitting reasoning on requirements evolution
- Identifying requirements features (e.g., changeable or stable)

Massimo Felici
Requirements Evolution

Issues with evolution

- Incomplete Industrial data
- Evidence for Dependability
- Evolutionary Management: Process Oriented

Evolutionary questions

- Is Evolution too Complex? – How do we characterise?
- Where is Evolutionary Information?
- From Process to Product Evolutionary Management?

Massimo Felici
Structure, Processes and Components

Elements of design:

- Survey of the design process
- Configuration - Evolution
- Representations
- Reflection

- Other areas: compositionality/composability

Massimo Felici
Case Studies Survey for Design Recommendations

Informing the design process

- Ideas from inside & outside the computer field
- System designers
- Investigate industrial/organisational accidents reports
- Use formal/graphical representations for fault tracking
- Identify vulnerable parts/paths in systems
- Formulate recommendations
Examples of provisional recommendations:

- Make small *incremental steps*
- Integrate several *organizational levels*
- Be aware of implications of *ad-hoc reuse*
- Add *redundancy/diversity*

But let's keep in mind that...

- The system must remain *testable*
- You must be able to assess its *reliability, availability, etc.*
- The system is likely to *evolve*

Massimo Felici
Case Studies Survey for Design Recommendations

Further work

- Continue the investigation of case studies
- Find an integrative graphical representation (e.g., AND/OR gates, time, hierarchical levels)
- Provide generic recommendations for design
Configuration

- **Issues**: scale, complexity, enabling social learning, flexibility, cost, etc.

- **Drivers**:
 - Technical: building the configuration system for EU DataGrid
 - Intervention in an ERP system in production planning
 - Access control design for a medical records system (conflicting dependability requirements)
 - Configuring a hospital information system (common system components, diverse user environments)
Representations

- Key element in communicating between stakeholders
- Highly domain dependent
- Diagrams have limited expressiveness
 - Useful in communicating with users
 - Constraining design process, capturing domain assumptions
 - The basis for tools
- Empirical work on the use of representations
- Design guidelines for representations
- Elimination of some categories of communication errors
Reflection

- Most Human-Computer systems include *incomplete self-models* of some kind.
- These are useful in adding flexibility and ease of description.
- They have *hazards*:
 - *Theoretically*: difficulties in reasoning about systems
 - *Empirically*: can make systems unstable and hard to analyse/predict
- Empirical work on financial systems: Long-Term Capital Management
- Connections to other areas, e.g., Security
Design Driven by Dependability Modelling

- basis: *probabilistic modelling* of dependability

- drive design decisions by evaluating their consequences

- the fault tolerance viewpoint

- *design compromises* that deliver:
 - good dependability and
 - ways of justifying claims for good dependability

- a few examples of interesting questions ...

Massimo Felici
Example 1: Issues of “Perfection”

- an important category of *statements* about dependability: “*this product has no defects [of this category]***”

- open practical question:
 - integrate Boolean formal verification with probabilistic reasoning claims via simplicity of design
 - hence easier design/verification?
 - meaningful in terms of *probability* of no defects with a meaning in terms of *probability* of no failures

- e.g.: 2-channel system with diverse claims for the two channels
 - probability of *perfection*
 - probability of *failure per demand*
Example 2: Diversity

- **background**: modelling reliability of systems built with diverse redundancy
 - applicable to designing *systems* or *processes*
 - *trade-offs* between
 - seeking reliability of individual channel/stage
 - and seeking diversity between them
 - new applications in DIRC
 - human-machine systems, e.g. advisory computing systems + users
 - combination of methods in development stages
 - diversity of arguments in supporting decisions (e.g., safety case)

Massimo Felici
Conclusions and Further work

Design for Dependability
- *Multidisciplinary*

- Open *theoretical* and *practical* questions

- Based on different *case studies*

Further Work
- Need to *focus* the results

- Identify practical *tools* and *guidelines*
Thank you!
SAFECOMP 2002
The 21st International Conference on Computer Safety, Reliability and Security
10-13 September 2002, Catania, Italy
http://www.safecomp.org