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Abstract. In the late 1960s, Dana Scott first showed how the Stone -
Tarski topological interpretation of Heyting’s calculus could be extended
to model intuitionistic analysis; in particular Brouwer’s continuity prin-
ciple. In the early ’80s we and others outlined a general treatment of
non-constructive objects, using sheaf models—constructions from topos
theory—to model not only Brouwer’s non-classical conclusions, but also
his creation of “new mathematical entities”. These categorical models are
intimately related to, but more general than Scott’s topological model.
The primary goal of this paper is to consider the question of iterated
extensions. Can we derive new insights by repeating the second act?
In Continuous Truth I, presented at Logic Colloquium ’82 in Florence, we
showed that general principles of continuity, local choice and local com-
pactness hold in the gros topos of sheaves over the category of separable
locales equipped with the open cover topology.
We touched on the question of iteration. Here we develop a more gen-
eral analysis of iterated categorical extensions, that leads to a reflection
schema for statements of predicative analysis.
We also take the opportunity to revisit some aspects of both Continuous
Truth I and Formal Spaces (Fourman & Grayson 1982), and correct two
long-standing errors therein.
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1 Introduction

Brouwer, in his Cambridge lectures [8], distinguishes two “acts of intuitionism”.
The first (p. 4) is to reject some “principles of classical logic, blindly formulated.”
In particular, Brouwer rejects the principium tertii exclusi: “the principle of the
excluded third, ... cannot in general serve as a principle for discovering mathe-
matical truths.” This first act is formally enshrined in Heyting’s predicate calcu-
lus, which intuitionism shares with various flavours of constructive mathematics.

Brouwer’s second act of intuitionism is more subtle.

Admitting two ways of creating new mathematical entities: firstly in the
shape of more or less freely proceeding infinite sequences of mathemat-
ical entities previously acquired; secondly in the shape of mathematical
species, ... (op cit. p.8)



Brouwer uses such non-constructive creations to derive strongly non-classical
results, such as his celebrated continuity principle:

Each full function of the unity continuum is uniformly continuous. (p.80)

To model this ‘second act’, we base ourselves in a constructive setting B, and
model the addition of new mathematical entities by the passage to an extension
E = B[D], that includes a new entity, D. Working within the extension, we model
Brouwer’s arguments, and his non-classical conclusions—such as the contnuity
principle.

The Lawvere-Tierney notion of an elementary topos E provides a paradig-
matic example of a constructive setting, and their construction of a classifying
topos, extending a base topos by adding a generic model, D, of some geometric
theory, has now been widely used to model the introduction of new mathematical
entities (see e.g. [9] for a recent example).

For the simplest infinitary extensions — adding a generic infinite sequence
by taking sheaves over formal Baire space or formal Cantor space [1, 2] — it is
easy to see that the construction is reflexive. This was part of the folklore thirty
years ago, but appears to be still unrecorded in the literature. We first review
these examples, and then consider models such as those introduced in [3–6] and
used extensively by, e.g., [7, 9].

In [6], we considered the interpretation of logic in the gros topos of sheaves
over the category of separable locales equipped with the open cover topology. We
showed that general principles of continuity, local choice and local compactness
hold for these models. In §5 we touched on the question of iteration. Our analysis
there focussed on low-level detail. We failed to see the wood for the trees. Plans,
announced there, to develop a high-level account in collaboration with Max Kelly
never materialised.

Here we provide a quite general category-theoretic account of iteration —
the construction of a model within the model — a preliminary report of ongoing
work. This allows us to show that in some models, M, a reflection principle that
states that, a statement φ of predicative analysis is true iff it is true in the model,
is valid:

Reflection for φ : M � φ iff M � pM � φq

We also present the basic facts we need relating open locales to open maps,
correcting an error in [10]. These facts are no longer new — for an elephantine
account see [11] ( ) — but our presentation maybe more accessible, from a
logical perspective, than the definitive treatment in [12].

2 Preliminaries

We compose morphisms in diagram order: for a
f- b

g- c we have a
fg- c .

Otherwise, our notations and definitions generally follow those of Mac Lane &
Moerdijk [13] (M&M) or Johnstone , except where some constructive finesse
is required.
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Context Our arguments are intended always to be formalisable in Higher-order
Heyting Arithmetic (HAH), a simple impredicative type theory also known as
the logic of topoi. Much, maybe all, of what we say will be formalisable within a
weaker predicative setting [14, 9], but we have neither space nor time to attempt
that here. A set (Kuratowski) finite iff it can be enumerated by some natural
number, and countable iff it can be enumerated by IN ; in each case, repetitions
are allowed. Any countable X is inhabited — which means that there is some x
such that x ∈ X .

We use the locutions of dependent types, for example when we discuss cov-
erings and sheaves, but these can be interpreted within a simple type theory
using a standard categorical trick, due originally to Grothendieck. An indexed
type Ai | i ∈ I is given by a morphism A - I. This representation means
that operations are defined uniformly across the family. Jean Bénabou and his
school showed how it can be used to develop category theory in an essentially
predicative setting [15].

2.1 Frames and Locales

We recap some facts, which should be well-known [16, 17, 10, 18, 14, 12, 19].

Definition 1. A frame, F , is a complete ∧
∨

-distributive lattice; finite meets
distribute over arbitrary joins: a ∧

∨
i∈I bi =

∨
i∈I(a ∧ bi) . A frame morphism

preserves > ∧
∨

. A basis G ⊆ F is a subset such that u =
∨
{v ∈ G | v ≤ u},

for every u ∈ F . The category L of locales is defined to be the opposite of the
category of frames. Following [12] we often refer to its objects as spaces.

Given f : X - Y, a morphism in L, the corresponding frame morphism is
the inverse image morphism f∗ : O(Y) - O(X ) . L can be viewed as a category
of generalised spaces [19]. Any set X, can be viewed as a discrete space corre-
sponding to the frame P(X). The one-point space 1l = {∗} corresponds to the
frame P(1l) . A point of X is a morphism x : 1l - X . Classically, P(1l) appears
trivial; constructively it encapsulates the ambient propositional logic,

For U ⊆ 1l we have U =
∨
{> | ∗ ∈ U} ({1l} is a basis). Since this join must

be preserved, for any locale, X , there is a unique frame morphism,

·̂ : P(1l) - O(X ), given by Û =
∨
{> | ∗ ∈ U} , (1)

and thus a unique locale morphism X - 1l to the one-point space.

Open Maps Any frame provides a model of Heyting’s propositional calculus.
Heyting’s implication is given by, p⇒ q =

∨
{r | r∧p ≤ q} . Heyting’s implication

⇒ is not, in general preserved by a frame morphism. Frame morphisms that do
preserve ⇒ correspond to open maps of locales. They also have a simple logical
characterisation [12].
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Definition 2. A locale morphism f : A - B is defined to be: surjective iff f∗

is 1-1; injective iff f∗ is onto; open [12, 20]1 iff f∗ preserves both
∧

and ⇒.
A locale A is said to be open (and surjective) iff the locale morphism A - ∗

is open (and surjective).

Remark 1. ([12] V.1; A Lemma 1.5.8) Since a frame morphism f∗ preserves
∨

,
it has a right adjoint, f∗, given by f∗A =

∨
{B | f∗B ≤ A} . Dually, f∗ preserves∧

, iff it has a left adjoint, f!, given by f!A =
∧
{B | A ≤ f∗B} , in which case

f∗ preserves ⇒ iff f! satisfies the Frobenius Condition: f!(A∧f∗(B)) = f!A∧B .

Lemma 1. The locale morphism A - ∗ is open iff it preserves
∧

.

Proof. (c.f. [12] Chapter V 3.1) For U ,V ⊆ 1l

U ≤ V iff ∗ ∈ U → ∗ ∈ V iff U = 1l→ V = 1l (2)

Assuming we have a left adjoint ! a ·̂ , so that !U ≤ p iff U ≤ p̂ , obviously
p̂⇒ q ≤ p̂ ⇒ q̂ . It remains to show p̂ ⇒ q̂ ≤ p̂⇒ q . Equivalently it suffices to
show, assuming U ∧ p̂ ≤ q̂ that U ≤ p̂⇒ q . Now the following are equivalent:

U ≤ p̂⇒ q iff !U ≤ p⇒ q iff p∧ !U ≤ q .

Assuming U ∧ p̂ ≤ q̂, we apply (2) to show the last of these. If p∧ !U = 1l then
p = 1l , so p̂ = > . Substituting > for p̂ in our assumption tells us that U ≤ q̂ , so
!U ≤ q; but we also know that !U = 1l , so q = 1l . ut

As an exercise in this form of constructive argument, we give a direct proof
of the Frobenius condition.

Lemma 2. ( p. 618) If the inverse image of locale map A - ∗ has a left
adjoint, ! a ·̂ then it satisfies the Frobenius condition !(U ∧ p̂) = !U ∧ p .

Proof. By adjointness, !(U ∧ p̂) ≤ !U ∧ p . To show equality, assume !U ∧ p = 1l
then !U = 1l and p = 1l so p̂ = > and !(U ∧ p̂) = !U = 1l . ut

Any frame, O(X ) , can be used to provide an O(X )-valued interpretation, as
in [16], of the impredicative higher-order logic (HAH). This is the interpretation
of HAH in the localic topos, Sh(X ) , of sheaves on X .

Example 1. Given a locale morphism πA : A - X we define an O(X )-valued
poset O(A/X ) with underlying set O(A). For U, V ∈ O(A) we define

JU = V K =
∨{

p ∈ O(X ) | U ∧ πA∗(p) = V ∧ πA∗(p)
}

(3)

JU ≤ V K =
∨{

p ∈ O(X ) | U ∧ πA∗(p) ≤ V ∧ πA∗(p)
}

(4)

1 Our earlier paper on Formal Spaces [10] betrayed an unfortunate confusion: our Defi-
nition 2.9 of open map omitted the Frobenius condition. We are grateful to the eagle-
eyed Peter Johnstone for pointing this out in his review, MR0717242 (85c:03023).
The statement of Theorem 2 (below) appears already as Lemma 2.12 of [10], but in
the context of this weaker definition of ‘open’—thus making a weaker claim. Lemma
1 provides the necessary buttress to our earlier proof.
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This O(X )-valued poset can be viewed a frame within the O(X )-valued inter-
pretation. In fact, every internal frame in a localic topos arises in this way
[10]. Given πB : B - X , a map f∗ : O(A) - O(B) represents an internal map
f∗ : O(A/X ) - O(B/X ) iff it is extensional in the sense that,

for all U, V ∈ O(A), we have JU = V K ≤ Jf∗U = f∗V K . (5)

Extensional maps correspond to commuting triangles π∗A = π∗Bf
∗ .

Lemma 3. For any extensional map

f∗ : O(A/X ) - O(X/X ), we have f∗(V ) ∧ p ≤ f∗(V ∧ πA∗(p)) . (6)

Proof. It follows from (3) that, p ≤ JU = V K iff U ∧πA∗(p) = V ∧πA∗(p) . Since
p ≤ JV = V ∧ πA∗(p)K , we have p ≤ Jf∗(V ) = f∗(V ∧ πA∗(p))K , and thus,
f∗(V )∧ p ≤ f∗(V ∧ πA∗(p)) . This is the semantic counterpart to Lemma 2. ut

Proposition 1. [12] The locale morphism πA : A - X is open (and surjec-
tive) iff the the O(X )-valued poset O(A/X ) it represents is internally open (and
surjective).

Proposition 2. An element U ∈ O(X ) is said to be positive (Pos(U)) iff every
cover of U is inhabited. A locale, X , is surjective iff Pos(>) , and open iff {U |
Pos(U)} is a basis for O(X ). 2

Formal Spaces are locales presented as spaces of models for some, possibly
infinitary, geometric propositional theory. If x : 1l - X is a point of X , then for
each U ∈ O(X ), we write x ∈ U to mean that ∗ ∈ x∗(U), so x∗(U) = Jx ∈ UK .
We can use the same notation, Jα ∈ UK = α∗(U), for a generalised point, α,
which is just a morphism α : A - X .

Consider a language L with a set of basic propositions p ∈ IP ⊆ O(X ). An
O(A)-valued model for L is given by a morphism α : A - X . We give each basic
proposition p ∈ IP the truth value JpKα = α∗(p) = Jα ∈ pK. We say a sequent,
p ` C, where p ∈ IP and C ⊆ IP, is valid for α iff JpKα ≤

∨
{JqKα | q ∈ C} .

Definition 3. [10] A geometric presentation of a formal space (IP,A) consists
of a structure IP of basic propositions and a collections A of axioms:

IP is a preordered set with conditional finite meets: if a finite set has a lower
bound then it has a greatest lower bound. In particular, if IP is inhabited, then
it has a top element >. We write p ↓ for {q | q ≤ p}. A crible of p is a set
K ⊆ p↓, such that ∀q ∈ K. q↓⊆ K. For K a crible of p and q ≤ p, observe that,
K �q = K ∩ q↓ is a crible of q.
A is a covering relation, that is, a set of sequents, p ` C, “C is a basic cover

of p”, where p ∈ IP and C ⊆ p↓, which is stable in the sense that, if p ` C, K
is a crible of p with C ⊆ K, and q ≤ p, then there is some basic cover q ` D of
q such that D ⊆ K �q.
2 These appeared in [10] but are due to Joyal ([12] Chapter V; Lemma C3.1.7).
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A crible, K of > is closed iff for all basic covers p ` C, if C ⊆ K then
p ∈ K. The closed cribles are the formal opens O(IP,A) of the formal space.

We say the formal space is separable if IP is countable and has decidable
equality.

O(IP,A) is a frame. The corresponding locale is the formal space (IP,A) of
models of the presentation. Geometrically a sequent, p ` C, is a cover; logically
we read it as an entailment, where the right-hand side is an implicit disjunction.
When presenting a formal space we often write a cover as a formal disjunction—
this can be viewed as simply a suggestive notation for a set of basic propositions.

Proposition 3. The formal space (IP,A) is open if for every cover p ` C ∈ A,
C is inhabited. In this case, if IP is inhabited the space is surjective.

Definition 4. A O(X )-valued model of (IP,A) is an assignment of a truth value
JpK ∈ O(X ) to each basic proposition such that:

p ≤ q → JpK ≤ JqK J>K = > JpK ∧ JqK ≤
∨
{Jp ∧ qK} (7)

JpK ≤
∨
{JqK | q ∈ C} for each axiom p ` C ∈ A . (8)

Morphisms, α∗ : O(IP,A) - O(X ) , from a locale X to a formal space (IP,A)
correspond toO(X )-valued models. Since each p ∈ IP is a basic open of the formal
space, we write Jα ∈ pK for α∗(p).

Examples For each example below, the basic opens are well-known from math-
ematical practice, and we adjust our notation accordingly — for example, to
axiomatise a real number, we write p < r < q in place of r ∈ (p, q).

For any set X, the discrete formal space, X , is given by X = X>, the poset
obtained by adjoining a (new) top element, >, with ∀x ∈ X.x < >, together
with a single axiom:

X > `
∨
x∈X

α = x (9)

Each basic open is a singleton; we write α = x for the basic proposition x. The
corresponding frame is the power set, O(X,> ` X) = P(X). A P(1l)-valued
model, corresponds to a point of the formal space of models of (IP,A) . A P(X)-
valued model corresponds to a function: an X-indexed family of models.

If (IP,A) and (Q,B) are formal spaces, their product is given by (IP×Q,A+B)
where IP × Q has the product (pointwise) preorder and A + B includes both{

(p, q) ` C × {q} | p `A C
}

and
{

(p, q) ` {p} × C | q `B C
}

.
If X = (IP,A) is a formal space, and X is a set then the formal product

space is XX = (X ⊗ IP, X ⊗A). We introduce a formal α : X - X . The basic
proposition (x, p) should be read as x ∈ α∗(p).

Here, X ⊗ IP consists of those finite subsets F ⊆ X × IP satisfying the
compatibility condition: (x, p) ∈ F ∧ (x, q) ∈ F → (x, p ∧ q) ∈ F , ordered by,

F ≤ G iff ∀(x, p) ∈ G. p = > ∨ ∃q ≤ p. (x, q) ∈ F . (10)
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We say (x, p) is compatible with F ∈ X ⊗ IP iff for every q such that (x, q) ∈ F
the meet p ∧ q is defined. In this case, we write

F ⊕ (x, p) for F ∪ {(x, p)} ∪ {(x, p ∧ q) | (x, q) ∈ F} .

X ⊗ A includes a family of covers for each cover p ` C ∈ A. For each (x, p)
compatible with F we have a cover F ⊕{(x, p)} `

{
{F ⊕{q} | q ∈ C

}
. This con-

structive presentation of a product of locales is a (very) special case of Hyland’s
construction of exponents [21] Proposition 3: a discrete space is locally compact!

Formal Baire Space, B, is the formal space of models of the theory of a
function α : IN - IN; for brevity we call it simply the formal space of functions
α ∈ ININ . Similarly, formal Cantor Space, C, is the formal space of functions
α ∈ 2IN. The basic opens correspond to finite initial segments of an infinite
sequence: a ≺ α is the proposition represented by a ∈ T = X<IN, the tree of
finite sequences, where X is IN or 2, respectively. In any model, > ` 〈〉 ≺ α, since
〈〉 = > . We also require:

B a ≺ α `
∨
n∈IN

â n ≺ α for each a ∈ T = IN<IN, (11)

C a ≺ α ` â 0 ≺ α ∨ â 1 ≺ α for each a ∈ T = 2<IN, (12)

where, â n is the extension of a by n. So, a model corresponds to an infinite path
through the tree. We could, of course, construct these as exponents of discrete
spaces.

The formal Dedekind Reals, R, axiomatise an open cut in the rationals. Our
basic propositions are proper, rational open intervals, (p, q) with p < q, where
p, q ∈ Q∗ = Q ∪ {−∞,∞}. These intervals are ordered by inclusion. We write
p < r < q, for r ∈ (p, q). The covering axioms are:

R
p < r < q `

∨
{p′ < r < q′ | p < p′ < q′ < q}

p < r < q ` p < r < q′ ∨ p′ < r < q where, p < p′ < q′ < q
(13)

Definition 5. [17] A locale A is T1 iff for every locale X , the specialisation
ordering on the set of X -valued points [X ,A] is trivial: x ≤ y → x = y, or,
equivalently, if every localic topos, Sh(X ) satisfies

∀x, y ∈ Pt(A).∀U ∈ O(A). (x ∈ U → y ∈ U)→ x = y .

Lemma 4. Each of X ,B, C,R is T1. if A is T1 then so is AX for any set X.

Proof. For Baire space and Cantor space this is straightforward, since the values
Jα(n) = mK, where m,n ∈ IN, determine α, which is single-valued. Lemma
1.2.17 tells us that since R is regular, it is T1 (there called TU ), but a direct
constructive proof “in the internal logic” is instructive.

Suppose s ≤ r, are generalised points of R: that is, for any U ∈ O(R) , if
s ∈ U then r ∈ U (it suffices to assume this for every proper rational interval
U). For p < q < q′ < p′, let P = (p, p′) and Q = (q, q′). It suffices to show that,
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if r ∈ Q then s ∈ P, since such proper subintervals cover P. Let W be such that
W ∧ Q = ⊥ and W ∨ P = > in O(R) . (if such an W exists we say Q / P; in
this case, it can be chosen as the join of two basic intervals.) Certainly s ∈ P
or s ∈ W, since W ∨ P = >. So s ∈ P or r ∈ W. Now suppose r ∈ Q; this is
incompatible with r ∈ W, since W ∧Q = ⊥, so we conclude that s ∈ P.

Tracing the interpretation of this argument would give an algebraic proof: a
sequence of inequalities starting from the assumption that Js ∈ UK ≤ Jr ∈ UK
and showing for the chosen basic opens Q / P that Jr ∈ QK ≤ Js ∈ PK . ut

Lemma 5. If A = (IP,A) is a formal space, and we lift the presentation to
Sh(X ) then the corresponding internal locale — the interpretation of the (lifting
of the) presentation in Sh(X ) — is represented by the projection X ×A - X ,
where X ×A is the product locale.

Proposition 4. If A - X is a morphism of locales, then the correspond-
ing geometric morphism Sh(A) - E = Sh(X ) is equivalent to the extension
Sh
E

(A/X ) - E = Sh(X ).

Adjoint Retracts Now consider two formal spaces, P = (IP,A) and Q = (Q,A),
where IP ⊆ Q is a subset, with the inherited preorder, closed under conditional
finite meets: if a finite subset of IP has a meet in Q then its meet is in IP.
These presentations have possibly different posets of basic propositions, but the
same axioms, which must mention only propositions in IP . Clearly the map
i∗ : O(Q,A) - O(IP,A), given by V - V ∩ IP, is a frame morphism, that
also preserves

∧
. So it has both right (i∗) and left (i!) adjoints:

U
i∗-
{
q | ∀p ≤ q. p ∈ U

}
U

i!-
{
q | ∃p ∈ U. q ≤ p

} O(IP,A)

i∗ -

� i∗= r∗

i!= r∗-
O(Q,A)

Lemma 6. [18] In the situation just described, i! preserves ∧ , so we have an ad-
joint retraction P ⊂-� Q of locales. For any T1 locale, X , we have an equivalence
L[P,X ] ∼= L[Q,X ].

3 Reflections

A reflection principle in set theory asserts that some property of the class of all
sets is reflected already in some set, and thus serves to extend the universe of
discourse and reduce incompleteness. A proto-example might be the introduction
of an infinite set by reflection on the closure of the class of all sets under the
successor operation x - x ∪ {x}. (See e.g. [22] for more elevated examples.)

Brouwer’s introspection serves a similar philosophical purpose. It is natural
to ask whether iterating Brouwer’s second act leads to further insights. We say
that an extension is reflexive if truth in the iterated model is reflected to the
model, as described in the Introduction.

8



3.1 Topological Models

Joyal first pointed out that topological models are best viewed as localic models
that introduce a generic point of a formal space. From this perspective, Scott’s
topological model [1, 2] is an extension constructed by adding a generic point of
ININ. From the classical perspective adopted in Scott’s two papers there is no
difference between the open sets of the space of points of ININ, equipped with
the product topology, and the formal Baire space B [10]. Here we start from a
non-classical base. We take the formal space as the primary object of study.

Classically, the theories R,B, C are complete — which means, in each case,
that the formal space has enough points (to distinguish the formal opens), or
equivalently that the topological opens and formal opens coincide. Construc-
tively, this is not provable in HAH—completeness is equivalent (in HAH), for R,
to the Heine-Borel theorem (IR is locally compact), and for B, C to Brouwer’s
Principle of Bar Induction, and Fan Theorem, respectively [10].

Theorem 1. The O(X )-valued model includes sufficient points to distinguish
the formal opens of X , where X may be B, C, or R .

Proof. Our proof is constructive, and does not presume a metatheory in which
X has enough points. Let O(X ) = O(IP,A). In the O(X )-valued model, X is
represented by a projection π : X × X - X . Elements of IP play two rôles: in
the first dimension (onto which we project), p ∈ IP is a basic truth value. In the
second dimension q ∈ IP is a basic proposition of the internal presentation of X .
An internal formal open K ∈ O(X ) is represented by a formal open of X × X ,
determined by the values Jq ∈ KK, for q ∈ IP, which, in turn, are determined by
the sets

{
p ∈ IP | p ≤ Jq ∈ KK

}
.

Internal points are functions α : X - X , or, equivalently, sections of the
projection [16]. The identity function on X (the diagonal section) gives a generic
point, γ. By definition, Jγ ∈ qK = q↓ , for any q ∈ IP.

To show that X has enough points it suffices to exhibit points αp,q , where
if q = > then p = > , such that Jαp,q ∈ q̄K = p ↓ ; that is, frame morphisms
α∗a,b : X - X such that α∗p,q(q ↓) = p ↓ . In the case of the reals, for example,
there is a unique rational linear function that maps one rational open interval to
another; so these functions suffice to distinguish formal opens. We leave B and
C as an exercise for the reader. ut

Whether the base from which we start is classical or constructive, the localic
model using the formal opens produces an extension π : B[B] - B that includes
a generic point, corresponding to the identity morphism γ : B - B. Geomet-
rically, generic means that the points α of B in any topos E - B correspond

to geometric morphisms, E a- B[B], with α = a∗(γ), making the triangle com-
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mute.

E a - B[B] B[B][B]
d - B[B]

B
�

π

-

B[B]

b

?
π - B

π

?

Iterating this construction gives us a topos B[B][B]
b- B[B]. Like any topos over

B[B] it includes a point β = b∗γ ∈ B; it also includes another point δ ∈ B which
is generic for points of B in toposes over B[B]. Since any topos over B[B] is

also a topos over B, we see that δ corresponds to a morphism B[B][B]
d- B[B]

making the square commute. Furthermore, the square is a pullback, by the uni-
versal property of our second extension. Logically, B[B][B] - B classifies pairs
of models of the formal space B. Geometrically, it is given by the formal space
B × B whose points are pairs of points of B.

Classically, it is well-known that B × B ∼= B. The classical proof exhibits a
homeomorphism ININ× ININ ∼= ININ, for example, a zip function that interleaves
two sequences, whose inverse takes α to the pair (even(α), odd(α)). So the double
extension is equivalent to the single extension, and has the same logic. Working
constructively, the same is true, but we must work directly with the formal opens.
The map a↓ - (even(a), odd(a))↓ gives a homeomorphism of formal spaces.

Entirely analogous remarks hold for formal Cantor space, C, mutatis mutan-
dis, with T = 2IN. So we have full reflection for [5] (2.1) Open Data.

Proposition 5. If B is an elementary topos, B the formal Baire space, and C
the formal Cantor space in B, then B[B][B] ≡ B[B] and B[C][C] ≡ B[C] as toposes
over B. So, B[B] � φ iff B[B] � pB[B] � φq , for any formula φ of HAH.

We have no such straightforward reflection theorem for R, since R 6≡ R×R .

3.2 Extensions over Sites

Definition 6. [12] A site (C,J ) is a category C equipped with a covering sys-
tem, J . That is, a collection, J (A), of covers R = {Ai - A}i∈I , for each ob-
ject A in C, such that: if α : A′ - A and R ∈ J (A), then, for some R′ ∈ J (A′)
we have R′ ⊆ {β : A′′ - A′ | βα ∈ R̂} .

The Fundamental Fibration [15] Let T = (C,J ) be a site, where C has pullbacks.
The topos of sheaves can be viewed as an extension B[C,J ] = Sh(C,J ): the
Yoneda embedding provides a universal model of (C,J ) in a topos over our base,
B. Grothendieck showed how the Yoneda embedding Y : C - B[C,J ] can be
viewed as an internal site. We view the codomain projection C2 - C, from
the category of arrows C2 to C as an internal category, C2

/C, whose fibre over a
representable X is the slice category C/X. For α : Y - X, the restriction map
α∗ : C/X - C/Y is given by pullbacks along α .

10



We have described the internal category C2
/C corresponding to the fibration

∂1 . The topology J also lifts to an internal topology J/C on C2
/C :

if R = {ui : Ai - A}i∈I is a covering family in C, and β : A - X ∈ C/X ,
then Rβ = {ui : uiβ - β}i∈I covers in C/X.

To give an external representation of this extension, let J 2 be the topology
on C2 with covering families as follows: If R = {ui : Ai - A}i∈I is a cover-
ing family in C, and β : A - X ∈ C/X , then Rβ = {ui : uiβ - β}i∈I covers
β : A - X. If, furthermore, δ : X - A then the pullbacks δ∗ui : Ai ×A X - X
below cover δ : X - A :

Ai
ui - A Ai ×A X

δ∗ui - X

X
�

β

-

Ai
?

ui

- A

δ

?
.

The codomain morphism ∂1 : C2 - C gives a geometric morphism,

∂1 : Sh(C2,J 2) - Sh(C,J ) ,

whose inverse image is composition with ∂1 followed by sheafification; and whose
direct image is given by composition with the inclusion ∆ : C - C2, which
takes each object to its identity morphism. The inverse image just constructs
internal constant sheaves, and the direct image takes global sections. Since ∆
preserves covers and ∂1 a ∆, this is a case of Theorem 4 of M&M §VII.10 .

Proposition 6.

The geometric morphism ∂1 : Sh(C2,J 2) - E = Sh(C,J )

is equivalent to the extension Sh
E

(C2
/C,J ∗) - E = Sh(C,J ) .

We now investigate the logical properties of the iterated extension. Just as in

the localic case, it suffices to find some functor comparing C̃2 and C̃ . We have
three functors ∂1 a ∆ a ∂0 . These all preserve covers, so ∂1 and ∆ have the
cover lifting property (M&M §VII.10 Lemma 3).

Lemma 7. ∂0 also has the cover lifting property.

Proof. If R = {Xi
- X}i∈I is such that both ∂0(R) = {∂0(Xi) - ∂0(X)}i∈I

and ∂1(R), defined similarly, are covers in C, then R is a cover in C2.
Suppose X = π : X - Y and R = {ui : Xi

- X}i∈I is a cover in C then
the morphisms, (ui, 1lY ), from the objects R/Y = {uiπ : Xi

- Y }i∈I in C2 ,
to X, form a cover in J 2 .

We are now in the situation where each of the adjoint functors ∂1 a ∆ a ∂0
preserves covers and has the cover lifting property. Therefore (M&M §VII.10), we
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have three geometric morphisms whose inverse images are given by composition
(e.g. ∂∗0 (A) = ∂0A), followed by sheafification. We write C̃ for Sh(C) .

C̃2
∂0-�

∂1
- C̃ C̃2 � ∂̃∗

1 C̃ �
∆∗

∂1∗= ∂0!

C̃2 � ∂∗
0

∆∗
C̃ (14)

Both ∆∗ and ∂0
∗ preserve sheaves, so, for them, sheafification is unnecessary.

Since ∆∂0 = 1lC we have an adjoint retraction C̃
⊂
∆-�
δ0

C̃2 , and ∂0 is a surjection.

We have ∂0! = ∆∗ a ∂∗0 and, since these functors preserve sheaves,

∆∗(B ×
C̃2 ∂

∗
0(A)) = (∆B ×C̃ ∆∂0A) = ∆B ×C̃ A = ∆∗(B)×C̃ A ; (15)

the Frobenius condition holds. This means that ∂0 is locally connected, hence
open; it preserves exponentials and first-order logic. In fact, we are in the sit-
uation described by Moerdijk and Reyes [23] Theorem 2.2: ∂0 is a left-exact
functor which preserves covers and has the covering lifting property; ∆ a ∂0 is
a left-adjoint “right inverse”, ∆∂0 = 1lC . This gives a principle of predicative
reflection.

Proposition 7. [23] ∂∗0 preserves and reflects first-order logic, preserves expo-
nentials, and preserves the sheaf of points of any T1 formal space.

So, Sh(C,J ) � φ iff Sh(C,J ) � pSh(C2
/X ,J ∗) � φq , for φ a formula

in a language for predicative analysis — a language with finite types over IN,R,
possibly with constants for relations and functions in Sh(C,J ).

We might hope for an impredicative reflection, but this seems unlikely for
extensions over sites. Extensions that preserve powersets are quite special.

Lemma 8. Let C,J ) be a site. If Ω(B), the frame of closed cribles of some
B ∈ C0 , is isomorphic to a powerset P(X), then X is a singleton, and every
inhabited sieve contains 1lB. 3

Proof. Let φ be the composite X - P(X) - Ω(B) be the composite of the
singleton map with the isomorphism. Then, since X =

⋃{
{x} | x ∈ X

}
, we

have 1lB ∈
⋃{

φ(x) | x ∈ X
}

. Thus, for some x ∈ X we have 1lB ∈ φ(x) , so,
φ(x) = >. Furthermore, given such an x, for all y ∈ X we have φ(y) ≤ φ(x) ,
whence {y} ⊆ {x}; ergo, y = x. ut

Theorem 2. If ECop

is an atomic topos then C is a groupoid in E.4

Proof. This is a direct consequence of the lemma since Barr and Diaconescu
show (op. cit.) that for each object A in an atomic topos Γ (ΩA) is isomoprphic
to some P (X). ut
3 A classical proof of this fact appears in [24] (§7 Example 2). Here we give a con-

structive proof that can be interpreted in any elementary topos.
4 This is implicit in [12] VII.4 . Barr and Diaconescu use their classical version of the

lemma to prove this for a Boolean base topos, E. ( Corollary C3.5.2).
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3.3 Continuous Truth

Definition 7. A topological site is a category of open locales and continuous
maps, including enough open inclusions (a basis for each locale), closed under
finite limits, and equipped with the open cover topology.

This definition differs from those of [18, 23]; Moerdijk and Reyes use topological
spaces to construct their topological sites; we use locales. They, therefore, have to
appeal to principles such as Bar Induction, or Fan Theorem, in the metatheory
in order to show they hold in the topos of sheaves.

In [6] §4, we claimed, with proofs formalisable in HAH, that general principles
of continuity, local choice and local compactness hold for these models. The proof
of the key result, Proposition 4.1, presumes that a projection π :W ×U - U
is a cover for the open cover topology. This is true if W is an open surjective
locale, but obviously not in general—consider the empty space. The remedy is
to require that the site (C,J ) introduced in the opening sentence of §4 should
be a topological site, whose objects are open locales. The results claimed in §4
are then valid if we take any elementary topos with natural number object as a
base. We restate and prove Proposition 4.1.

Theorem 3. Let (C,J ) be a topological site. For any X ∈ C, the internal locale,
X represented by, O(X)(U) = O(U × X ), has enough points.

Proof. We must show that, if U  K covers Pt(W) and U  K is closed, then
U W ∈ K , for U ∈ C, and W ∈ O(X) . We assume the hypotheses, and let

IK = {Ui ×Wi | Ui Wi ∈ K�Ui} (16)

Clearly, IK is a closed crible of O(U)×O(X ), that is, an open in O(U ×X ) . We
will show that IK covers U ×W, so U ×W ∈ IK, which means that U W ∈ K .
We pull back along the projection π2 :W ×U - U . This introduces a generic
point ofW given by π1 :W ×U - W . We have,W×U  K�π2 covers Pt(W) ,
by persistence. In particular, the generic point is covered:

W ×U  K�π2 covers π1 that is, W ×U  ∃V ∈ K�π2. π1 ∈ V .

V ranges over basic opens of X . By unpacking the forcing definition, we see that

IK∗ = {Wi × Ui | for some V ≤ W, Wi × Ui  V ∈ K�π2 ∧ π1 ∈ V } (17)

covers W×U . We now show that every basic open W ×U ∈ IK∗ is in IK. Given
U, V,W such that W × U  V ∈ K�π2 ∧ π1 ∈ V we must show U  W ∈ K.
First, W × U  π1 ∈ V iff W ≤ V , so, by monotonicity, W × U  W ∈ K�π2.
Second, W is open surjective, so π2 is an open surjection; viewed as a basic open
in O(X) , W is constant, so U W ∈ K . ut

We observe that this proof does not require that every object of C be surjective,
indeed a subcategory of L with only open surjective objects will seldom be closed
under limits. However, if W is a positive open of any open space, like the W in
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the final steps of the proof just given, then W , as a subspace in its own right,
is open surjective. Any open space is surjective in so far as its positive basis is
inhabited. Nor do we require a full subcategory of L, so the result should apply,
for example, to a suitable localic version of the Euclidean topos, of sheaves over
the category of closed subspaces of IRn with C∞ functions, defined by Moerdijk
and Reyes [23], and other smooth topoi.

Proposition 8. If (C,J ) is a topological site and X ∈ C, then the inclusion
functor i : O(X ) - C/X has a right adjoint π which induces an adjoint retract

pair of geometric morphisms i : Sh(X )
⊂
i-
�
π

Sh(C/X ) . So, π∗ preserves and re-

flects first-order logic, preserves exponentials, and preserves the sheaf of points
of any T1 formal space.

Proof. The right adjoint π is given by f -
∨
{U | U factors through f}, which

satisfies the conditions of [23] Theorem 2.2 . So Proposition 7 applies. (The spa-
tial counterpart of this proposition appears in M&M (§VII.10 Theorem 5 ff.).

To show a predicative reflection principle, we must choose a suitable topological
site (C,J ) with extension E = ShB(C,J ); then provide a representation of the
iterated extension ShE(C,J ) as ShB(C†,J †), together with a left-exact functor
C† - C which preserves covers, and has the covering lifting property and a
left-adjoint “right inverse”.

Conjecture 1. Let (C,J ) be the topological site of open subspaces of separa-
ble open locales with open maps, with the open cover topology, then (C2,J 2)
provides a representation of the corresponding internal site.

This general setting should provide reflection principles for several of the
extensions introduced in [5]: (2.2) Independent Open Data , (2.3) Lawless Data,
and (2.4) Spread Data. One key point is that the category of open spaces with
open maps is closed under finite limits.

To extend such an account to more general examples, such as (2.5) Continu-
ous Data, will require further analysis of the constructive theory of the category
of open locales and continuous maps.
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