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THE "WORLD'S SIMPLEST AXI~[ OF CHOICE" FAILS 

M.P. Fourman-A. Scedrov 

We use topos-theoretic methods to show that intui- 
tionistic set tlleory with countable or ~ependent choice 
does not imply that every family, all of whose elements 
are doubletons and which has at most one element, has a 
choice function. 

i. Introduction 

The axiom in question (WSAC), originally formulated 

by F. Richman, states, VF 

Vx,y E F �9 x = y 
A § ~f : F § ~F 
VX E F " ZV,W,(V ~ w x = {V,W}) 

Of course, for such a family, any such f is a choice 

function, V x 6 F �9 f(x) E x. Also, F is completely 

determined by UF 

F = {OF i Zv �9 v E UF} 

Furthermore, UF may be any set which if it is inhabited 

is a doubleton. If A is such that 

ZV v E A § Zv,w - (v 9 w A = {v,w}), 

let E = {A i Zx - x 6 A} , then A = UF 

We use the technique (originating with Joyal) of consid- 

ering the universal example of such a set A. It is easy 

to check that the interpretation of higher-order logic 

in the classifying topos [12] [16] satisfies countable 

and dependent choice, CC & DC but not WSAC. This is 

perhaps the world's simplest example of this technique. 

We show that such examples can arise in the well-founded 

part of a topos [7] by embedding this universal example 
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2 FOUm~N-SCEDROV 

universally in 2 N (as • [3] w 

For details on classifying topoi we refer to Tierney 

[16] or Makkai & Reyes [~i]. The interpretation of 

intuitionistic type-theory and set-theory in a topos is 

described by Fourman [2] and [3] and mere concretely, 

by Osius [13] and Scott [15]. 

2. The Basic Model 

We introduce universally a set A which if it is 

inhabited is a doubleton, The classifying topos is the 

functor category S { where { is the category whose 

non-identities are 

with ~ o e =~ and ~2 = id. This is (equivalent to) 

the category of finitely presented such sets (E is the 

empty set and D a doubleton) and monomorphisms (monos 

because the equality on such a set is decidable and this 

would be reflected in any geometric axiomatisation by the 

addition of predicates or operations forcing homomorphisms 

to be monos). 

The models we consider in this section are thus 

functors from �9 into the category of sets. These are 

like Kripke models. The category ~ replaces the usual 

partial order and instead of restrictions we need 

transition maps corresponding to the morphisms of our 

category. In particular, in our case, a model X will 

be a pair of domains X(E) and X(D) together with an 

automorphism X(~) : X(D) § X(D) of order two and a 

restriction map X(e) : X(E) § X(D) whose image is fixed 

by X(B). The interpretation of logic in such a presheaf 

topos is given by a straightforward generalisation of 

Kripke's definitions [9]. Function spaces are modelled 

by the categorical exponents which are easily calculated 

using the Yoneda lemma [ll] [I0] . 

The universal A we want is given by the forgetful 

functor ~ § Sets. The family F = {A I Z x, x 6 Ak is 
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then represented by the functor F(E) = ~, F(D) : {A}. 

Since A : OF we now calculate the function space A F. 

AF(E) ~ [E, A F] ~-- [F • E, A] 

AF(D) --~ [F • D, A] similarly. 

In words, AF(E) is represented by the set of natural 

transformations from F x E to A (where E is the 

representable functor). Since (F • E) (D) is a 

singleton and A(D) is a doubleton with the non-trivial 

automorphism, there is no map (F • E) (D) § A(D) which 

respects the automorphism and so no natural transforma- 

tion F • E § A. Thus AF(E) = ~ and E~Zf : F § OF. 

So Zf : F + OF. However, since ~ "if A is inhabited 

A is a doubleton" (by construction), the hypotheses of 

WSAC are valid. Thus I# WASC. 

3. Generalities for Presheaf Models 

We firstly show that in any presheaf topos S ~ 

countable choice, CC and dependent choice DC hold 

(assuming the corresponding principles in our metatheory). 

The natural numbers in any presheaf topos are given by 

the constant functor ~(D) = N. Now suppose D C i~i 

and that 

D [[-Vn 6 ~ Zy E Y ~(n,y) 

where Y is some functor in S {. Then by CC for each 

n 6 N we have Yn 6 Y(D) such that 

D I[- ~(n,Yn)- 

We define a natural transformation 

f : D • N § Y 

by f(a,n) = (Y(~)) (yn) 

(i.e. for ~ : D + B 

By Yoneda (as before) 

for (~,n) 6 (D • I~) (B) 

and n E N ~I{(B)). 

f represents an element of 
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Y~](D) and by the persistence property of forcing 

D~ Vn 6 ~.~ (n,f(n)). The argument for DC is similar. 

We now consider induction over trees of finite 

sequences. If A is a set, the principle of induction 

over the A-splitting tree, I A states that if a 

collection of finite sequences K c A <N is persistent 

Ve 6 K �9 Va 6A 

a cover (or bar) 

Ve 6 A N �9 Ze s K 

e~<a > 6 K, 1 

e ca 2 

and inductive 

Ve [ Va 6 A �9 e~a> 6 K + e 6 K] 3 

then < > 6 K. We call i), 2) and 3) (conjoined) the 

hypotheses of I A for K. 

The fan theorem, FT and bar induction, BI are 

special cases (A : 2 and A = N). Such principles may 

fail in sheaf models [5], [14]. 

in presheaf topoi, finite and countable sequences 

are computed pointwise: t 

A N (D) ~ A(D) N 

and 

A<~ (D) ~ A(D) <~ 

If K is a subpresheaf of A <N and 

D li- "hypotheses of I A for K" 

<N 
then K(D) c A(D) is a persistent cover. 

In general, there is no reason why it should be inductive. 

However, if each restriction map from A(D) is onto and 

every extension of e in A<N(D) belongs to K(D) then 

from 

D I~ ~<a> 6 K for each a 6 A(D) 

we obtain 
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Thus D If- e E K 

IK(D) 

D li- Va - C<a> 6 K . 

and K(D) is inductive. By appeal to 

Dii -< > E K �9 

Since 2 and ]~ are given by constant presheaves, 

this shows that FT and BI pass to presheaf models. 

There are probably easier ways to see this but we want to 

take the analysis a little further. We show that our 

model of w satisfies I A for any presheaf A. Since 

every restriction from A(D) is an automorphism (hence 

onto), by the remarks above we have 

Dil- I A 

Now suppose that 

Eil- "hypotheses of I A for K" 

Then restricting to D we see that D II- < > 6 K 

whence D if- e E K for every e 6 A<N(D) 

This suffices to show that K(E) is inductive. By 

appeal to IK(E) we obtain Eli- < > E K. Thus 

I = I A 

A more general treatment of such induction principles in 

presheaf topoi requires a discussion of induction over 

categories. We shall not pursue this here. 

4. A Well-Founded Example 

Here we work inside the model constructed in w and 

show that the set A may be embedded in 2 ~ (in a 

suitable extension) without destroying CC or DC or 

adding a choice function for the corresponding family F. 

Again we consider the universal solution or classifying 

topos. To add an A-indexed family of elements of 2 IN 

(Cantor space) we take sheaves on the space (2~T) A 

This type of model (sheaves on a space) is discussed 
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in detail in Fourman & Scott [6] and Feurman & Hyland 

[5]. In any such model the internal Cantor space is 

represented as the sheaf of continuous 2 ~-valued 

functions. In our example, the required elements of 

Cantor space are given by the various projections from 

(2~) A to 2 ~ . 

The projections from any inhabited open of (2~)A 

from a set isomorphic to A. They generate a subsheaf 

of the internal Cantor space which satifies internally 

the condition that if it is inhabited it is a doubleton. 

The corresponding family ~ is represented as the 

trivial sheaf generated by a family of global sections 

isomorphic to F. 

We now show that if there is any morphism ~ § 

defined over some inhabited open of (2~) A then there 

is a function F § A (contrary to the results of 2). 

Suppose that ~ 6 [[f : ~ § ~]] then for each x 6 F 

there is a unique projection ~ : (2~)A § 2 ~ such a 

that e 6 [[ f(x) = 72]] . As ~a determines a this 

would yield a function F § A. This shows that our new 

model cannot satisfy WSAC. 

To see that CC and DC hold in this model we note 

that the space (2~) A ~ (2 A) ~ is zero-aimensional in 

the sense that every open cover has a refinement by 

mutually disjoint clopen sets because in the model of w 

we have I(2A) and 2 A is decidable. Thus any 

existence statement can be realized by a global section 

and we can use the corresponding principles in the model 

of w to choose sequences of global sections which define 

the required internal functions. 

ZF + DC } WSAC. 

5. Remarks 

The choice principle WSAC arose from the considera- 

tion of separable closures in constructive mathematics: 

if X 2 + 1 has a root it has two and they are distinct. 
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In the field, 

R § ~, 

which lives in the model of w with the transition maps 

given by the inclusion and complex conjugation, the roots 

of X 2 + 1 are just our set A. There can be no field 

extension in which the set of roots becomes inhabited 

since this would yield a choice function. 

However, adding a root universally gives us an 

open covering. This corresponds to taking sheaves 

in S { on the internal locale 
o 

o o o 

with the transition maps indicated. This locale is 

generated by the elements ~f(*) = a I ] and 

~f(*) = a 2 ] which are permuted by the action of B. 

The use of I in the model of w to see that 
(2 A) 

CC or DC pass to our final model may be circumvented 

if we use the formal locale (2A) ~ in place of the 

space (2 A) ~ These coincide if I is valid [4]~ 
(2 A) 
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