
Solutions – Practical 2

Michael P. Fourman

February 2, 2010

structure Rational:NumberSig =

struct

type num = int * int

fun gcd(0,b) = b

| gcd(a,b) = gcd(b mod a, a);

fun red(a,b) =

let val res = gcd(a,b)

in (a div res, b div res) end;

fun (an, ad) ++ (bn, bd) = red(an*bd + ad*bn, ad*bd);

fun (an, ad) -- (bn, bd) = red(an*bd - ad*bn, ad*bd);

fun (an, ad) ** (bn, bd) = red(an*bn, ad*bd);

fun (an, ad) // (bn, bd) = red(an*bd, ad*bn);

fun ~~(n, d) : num = (~n ,d)

fun ((an,ad):num) == ((bn,bd):num) = (an*bd = ad*bn);

end

The auxiliary functions, gcd, and red (reduce), are hidden by the signa-
ture, so we don’t need to make them local. These auxiliary functions clearly
deal with integers, so we don’t need (but could have) type constriants on the
later function that use red. Some type constraints on the last two functions
are needed to disambiguate * and ~.

1

structure Interval:NumberSig =

struct

type num = real*real;

local fun min(a, b) :real = if a < b then a else b

and max(a, b) :real = if a < b then b else a

and min4(a, b, c, d) :real = min(min(a, b), min(c, d))

and max4(a, b, c, d) :real = max(max(a, b), max(c, d))

in

fun (a,b) ++ (c,d) :num = (a+c, b+d)

and (a,b) -- (c,d) :num = (a-d, b-c)

and (a,b) ** (c,d) :num =

let val ends = (a*c, a*d, b*c, b*d)

in (min4 ends, max4 ends) end

and (a,b) // (c,d):num =

if c <= 0.0 andalso d >= 0.0 then error "div zero"

else (a,b) ** (1.0/d, 1.0/c)

fun ~~(a, b) :num = (~b, ~a)

end;

fun (a,b) == (c,d) = (a = b) andalso (b = c) andalso (c = d) ;

end

Notice the use of local functions, and the way in which a 4-tuple is passed
to min4 and max4.

The definition of equality given here is very strict. We consider each
interval to represent an indeterminate number that lies somewhere in the
interval. We can only know that two indeterminate numbers are equal under
the conditions given here. However, you could also argue that we only know
that they are different when the intervals are disjoint. Proper resolution of
this dilemma would require non-boolean truth values. (C) Michael Fourman
1994-2006

2

