
CS201 Mid-term Examination

Michael P. Fourman

February 2, 2010

University of Western Australia
CS201 Mid-term Examination

Ross Lecture Theatre
Thursday 14th April, 1994

12.00 – 1.00pm

Information

• Regulations governing University Examinations will apply.

• The examination will last 60 minutes, including five minutes reading
time.

• Please deposit all books and bags at the front of the lecture theatre.

• Ensure that you are seated by 11.55am.

Instructions

• Your answers should be written, legibly, in the answer-booklet pro-
vided.

• This paper consists of four pages, printed on two sides of a single sheet
of paper. It contains one short question, A, and three longer questions,
1, 2, 3.

• Your mark will consist of your score on the short question (worth 5
marks), and your best two scores for the three longer questions, (each
worth 10 marks).

1

• You should therefore attempt the short question, and two of the
longer questions.

2

A. Short Question 5 marks
Give the responses of the ML system to the following sequence of dec-
larations

val a = 1;

val b = 2;

val c = 3;

fun f a = let val b = a + c in a + b end;

val b = 5;

f b;

1. Long Question 10 marks
The following datatype can be used to represent trees whose nodes can
have an arbitrary number of children.

datatype ’a Tree = Tree of ’a * ’a Tree list

(a) What tree does the following expression denote (draw a picture):

Tree(1, [Tree(2, []), Tree(3, [Tree(4,[])]),Tree(5,[])])

(b) Define a function to calculate the number of nodes in such a tree.

(c) We assign a level to each node in a tree as follows. The node at
the root is at level 1. Its children are at level 2. Their children
are at level 3 and so on.

Define a function countLevel : int -> ’a Tree -> int that
counts the number of nodes at a given level of a tree. The
expression, countLevel n t, should return the number of nodes
at level n in the tree t.

3

2. Long Question 10 marks
The EQueue signature is like the signature Queue, but is extended with
an additional operation multiple enqueue, menq:(Item list * Queue) -> Queue,
intended to add a number of items to the queue in a single operation.
The intention is that the items enqueued by a single menq operation
may be dequeued in any order, but they must all be dequeued after
any items entered in the queue by an earlier enq or menq operation,
and before any items entered by any later operation.

signature EQueue =

sig

type Item

type Queue

val empty : Queue

val enq : (Item * Queue) -> Queue

val deq : Queue -> (Item * Queue)

val menq: (Item list * Queue) -> Queue

end

An implementation of a queue, including this operation, uses the type
declaration

type Queue = (Item list list) * (Item list list)

the operations empty and menq are implemented as follows:

val empty = ([],[])

fun menq(items, (enter, leave)) = (items :: enter, leave)

(a) Complete the following declarations of the functions enq and deq

for this implementation

fun enq(item, ([],leave)) =

| enq(item, ((h :: t),leave)) =

fun deq(enter, (h :: t) :: r) =

| deq(enter, [] :: r) =

| deq(h :: t, []) =

| deq([], []) =

(b) What is the complexity of the three operations

i. enq,

4

ii. deq,

iii. menq

for this implementation?

5

3. Long Question 10 marks
The PQueue signature is like the signature Queue, but is extended with
an additional operation merge:(Queue * Queue) -> Queue, intended
to merge together two queues.

signature PQueue =

sig

type Item

type Queue

val empty : Queue

val enq : (Item * Queue) -> Queue

val deq : Queue -> (Item * Queue)

val merge: (Queue * Queue) -> Queue

end

An implementation of a priority queue of integer priorities represents
the queue by a list kept in order of decreasing priority:

type Item = int

type Queue = Item list

Here is the function deq: Queue -> int * Queue from this implemen-
tation

fun deq [] = raise Deq

| deq (h :: t) = (h, t)

(a) Give an implementation of the operation enq : (int*Queue) -> Queue,
compatible with this representation

(b) Give an O(n) implementation of the operation merge: Queue * Queue -> Queue,
compatible with this representation.

(c) Consider an alternative representation for a priority queue, using
an unordered list to represent the queue. For this representa-
tion, the enq operation is simple

fun enq (e, q) = e :: q

Complete the following table giving the complexity of the oper-
ations for each representation. (You are not asked to implement
all the operations.)

6

ordered unordered

enq O(1)
deq O(1)

merge

The End (C) Michael Fourman 1994-2006

7

