
Recursion and Complexity

Michael P. Fourman

February 2, 2010

In theory, there is no difference between theory and practice
— but, in practice, there is. Anon.

Introduction

In Practical One, you will experiment with examples of SML functions —
fac, fib, gcd and power. These are “obviously correct”; That is, the defi-
nitions of the functions are directly based on well-known mathematical rela-
tionships, and so we should have reasonable confidence in our programming
efforts. The issue of correctness is of fundamental importance in software
engineering, and will be addressed as the CS201 course progresses. However,
in this note, we shall tend to take correctness for granted and worry instead
about another important issue: efficiency.

Given some problem to be solved, we need to devise an algorithm, that is,
a sequence of computational steps that transforms an input (i.e., a represen-
tation of a problem) into an appropriate output (i.e., a representation of the
solution). When looking at the efficiency of algorithms, we are concerned
with their resource requirements. In general, the two important resource
measurements are the size of computer, and the amount of computer time,
required by an implementation of an algorithm. For many problems, there
are straightforwardly-expressed algorithms whose resource demands are suf-
ficiently enormous that we need to find more subtle algorithms needing less
resources. There is no guarantee that such algorithms will exist: usually
it can be shown that problems cannot be solved using any less than some
minimal level of resource.

1

Measuring resource requirements

If we have devised an algorithm, it possible to implement it by writing a
computer program1 and then to assess its efficiency by performing experi-
ments. For example, for different inputs to the algorithm, we might measure
the amount of memory space required, or the processor time required, to
compute the outputs. Note that the latter measure is not usually the same
as the actual time required, since the processor is likely to be doing other
things as well as running the algorithm. You will have a little experience of
experimentation in Practical One, where the time function will be used to
measure the processor time required to evaluate various functions on various
arguments. In some cases, this will yield unexpected observations worthy of
further explanation.

The basic problems with an experimental approach to checking efficiency
(and correctness, for that matter) are threefold. First, it is necessary to
implement the algorithm: this may be time-consuming and error-prone. Sec-
ond, details of the implementation may affect efficiency, and obscure the
essential behaviour of the algorithm. Third, it is not normally possible to
test the algorithm on all possible inputs, which may mean missing good or
bad special cases.

Analysing resource requirements

As an alternative to experimentation, we shall be studying the analysis of al-
gorithms as one thread of the course, that is, studying methods for predicting
the resources that an algorithm requires. Analysing even simple algorithms
can be challenging, and may require the use of non-trivial mathematics. The
immediate goal of analyses is to find simple means of expressing the impor-
tant characteristics of algorithms’ resource requirements, suppressing unnec-
essary details. Before embarking on an introduction to some of the technical
tools required for analysis of algorithms, this note will review the algorithms
from Practical One, to see what can be predicted about their resource re-
quirements. To keep things simple, we shall restrict our attention to the
computation time required, and not worry about memory space. In general,
when writing down algorithms, we do not have to use a particular program-
ming language, but can use an appropriate mix of notation and language that
permits a rigorous description. For the algorithms here, SML descriptions

1Assuming a software implementation — alternatively, we might build a piece of hard-
ware.

2

are as good as any (and, of course, have the added advantage that they can
be directly executed by a computer).

As Practical 1 will reveal, the basic problem with an analytic approach
to predicting the performance of an algorithm is that we usually analyse a
simplified computational model, which may abstract away features that, in
practice, dominate the performance.

Analysis of factorial algorithm

The factorial algorithm can be expressed using simple recursion:

fun fact 0 = 1

| fact n = n * fact (n - 1);

Looking at the computation that has to be done, we might identify three
things that will consume time: integer multiplication, integer subtraction
and recursive function calls. There are other possibilities but, if we try to
take every little detail into account, we are unlikely to get any kind of simple
analysis. Let us ignore the cost of making recursive calls, and suppose that
the cost of a multiplication is M and that that of a subtraction is S. We can
then define a function T (n), meaning “the time required by the algorithm to
compute n!”, in a very similar form to that of the actual algorithm:

T (0) = 0

T (n) = M + S + T (n− 1) for n > 0

From this,

T (n) = (M + S) + T (n− 1)

= 2(M + S) + T (n− 2)

= . . .

= n(M + S) + T (n− n)

= n(M + S)

If we regard M and S as being constants, this expression indicates that the
time to compute n! is proportional to n so, for example, computing (2n)! will
take twice as long as computing n! does. The acid test of such an analysis
is to check its predictions against observed reality. Times reported from the
SML function call time fac [512,1024,2048,4096] were 2, 11, 53 and 228
— more than quadrupling as the value of n is doubled. To explain this
discrepancy, we must both check our idealised analysis for flaws and also

3

consider whether the SML implementation might be introducing unexpected
behaviour.

In this case, one obvious problem is an over-simplistic view of the cost
of performing arithmetic. Regarding the subtraction time S as a constant is
reasonable here, since n is a ‘normal size’ integer, i.e., fits into 16 or 32 bits,
and so n-1 can be computed in one processor step. However, this is not the
situation for multiplication. Employing some knowledge of the problem to
be solved, we discover that n! grows very rapidly as n increases: Stirling’s
approximation for the factorial function reveals that n! grows at roughly the
same rate as nn, so the number of bits needed to represent n! (that is lg n!
where lg is the base-two logarithm function) grows at roughly the same rate
as lg nn = n lg n. Thus, it is not reasonable to charge a constant time for
every multiplication: the number of bits used for the right-hand operand in
n * fact (n-1) — roughly proportional to (n− 1) lg(n− 1) — will rapidly
become larger than 16, 32 or whatever limit our processor has on normal
integers.

Had we implemented the algorithm in C, we could not have used multipli-
cation in such a cavalier fashion, since integers are not allowed to be bigger
than the size that the processor can handle easily. To further understand
our SML experiment, we need to establish how much time such a long mul-
tiplication takes, in terms of individual processor steps. Our SML system
employs a straightforward algorithm (similar to long multiplication as learnt
at school, in fact). This means that the time to multiply a normal size integer
by a b-bit long integer is proportional to b. Thus, a more accurate expression
for T (n) would be:

T (n) = (n− 1) lg(n− 1)M + S + T (n− 1)

(where M is still some constant). Using appropriate solution techniques,
we can establish that T (n) ∝ n2 lg n For example, (2n)! will take just over
four times as long to compute as n! does. This corresponds rather better to
the experimental results. Normally, we should hope to be able to analyse
algorithms without having to probe details of possible implementations, be-
cause we assume that they will use ‘reasonable’ computational operations.
Here, the SML system was being a little ‘unreasonable’ perhaps, since it
was suggesting to us that an expensive operation was available at a modest
charge.

4

Analysis of Fibonacci algorithms

In the obvious Fibonacci algorithm, there are two conspicuous things that
consume time: integer addition and recursive function calls. Letting A be a
constant representing the time required for a simple addition, we can write
down a function T (n) meaning “the time required by the algorithm to com-
pute the n-th Fibonacci number”:

T (0) = 0

T (1) = 0

T (n) = A + T (n− 2) + T (n− 1) for n > 1

Using appropriate solution techniques, we discover (to our slight horror) that
T (n) is roughly proportional to 2n.

This is a very fast rate of growth, and helps to explain why our SML
implementations run very slowly, even for modest values of n. The problem is
the pair of recursive calls, which duplicate much work. A little thought leads
to the alternative fastfib algorithm that eliminates one of the recursions,
and so has:

T (n) = A + T (n− 1)

which is of similar style to the earlier factorial time analysis. Thus, the
time requirement is proportional to n — a dramatic improvement. Again,
as with the factorial algorithm, we might worry about whether the addition
operations can be done simply. However, this is a lesser concern when just
comparing the two different Fibonacci algorithms, since both perform similar
kinds of addition operations.

(Highlights of) analysis of greatest common di-

visor algorithm

Letting D be a constant representing the time required for a division (needed
to perform the mod operation), we can write down a function T (m, n) mean-
ing “the time required by the algorithm to compute the greatest common
divisor of m and n”:

T (m, 0) = 0

T (m, n) = D + T (n, m mod n) for n > 0

Here, the form of the recursion makes it rather harder to derive an expression
for T (m, n) in terms of m, n and D. The essential question is: how long will

5

the sequence of recursive calls be? It is rather hard to work this out, but it
turns out that the following is true:

if n < Fk then there are < k recursive calls

where Fk is the k-th Fibonacci number. If we indulge in some study of
Fibonacci numbers, and then do some algebraic manipulation, it is possible
to eventually establish that, at worst, the time required to compute gcd(m, n)
is roughly proportional to lg n. This backs up experimental observations that
the algorithm is fast. [Health warning: the full details of this analysis are
far beyond the scope of the CS201 course.]

(Exercise on) analysis of powering algorithms

Write down ‘time required’ functions for both the power and fastpower

algorithms. You should be able to derive a non-recursive expression for the
power time function fairly easily. [Hint: similar to the one for factorial.] Can
you derive a non-recursive expression for the fastpower time function? (If
not, await a lecture in the near future.) As with the factorial algorithm,
we also have to think about the size of integers involved. When we do this,
it turns out that there is not much difference between the performance of
the two algorithms, as you may have discovered experimentally. With the
SML implementation, there is a further twist: if the binary representations
of intermediate values contain lots of zeroes (e.g., when computing powers of
two), long multiplication is faster; this helps the fastpower algorithm.

Thus far, we have analysed various algorithms in a fairly informal way,
starting from first principles each time. In the remainder of this note, we
draw on our earlier experience in order to establish some general concepts
that are useful whenever algorithms are being analysed and compared.

There are three main things to be introduced: standard simplifications to
remove unnecessary detail from algorithms under consideration; some mathe-
matical notation to express concisely the resource requirements of algorithms;
and some algebraic techniques for manipulating formulae expressing resource
requirements. We look briefly at the first two of these, and defer the algebraic
techniques until later in the course.

Simplifying input detail

To quantify the resource requirements of an algorithm, we should really define
a function that maps each possible input to a prediction of the algorithm’s

6

resource requirement on that input. However, for all but the most trivial
types of input, this is a daunting undertaking because of the number and va-
riety of different inputs possible. Therefore, we normally distill the inputs to
get a simpler characterisation: the input size. Usually, when viewed at a low
enough level of abstraction, the size of a ‘reasonable’ binary representation
of the input is a good measure. This allows some comparison of the resource
requirements of algorithms from widely different problem areas. However,
within specific problem areas, it is often clearer to define input size at an
appropriate higher level.

The insertion of the word “reasonable” above is designed to avoid occa-
sions where we appear to be solving large problems cheaply but where we
are, in fact, solving small problems expensively, because the algorithm input
is represented in a way far more complicated than necessary. As a rough
guide to what is reasonable, we can be guided by a fundamental result from
information theory: if a data type has k different values, each of which is
equally likely to occur as inputs, then n lg k bits are necessary and sufficient
to represent a sequence of n inputs. As an indication that this result is not
unexpected, consider numbering the different values from 0 to k − 1, and
recall that lg k bits are necessary and sufficient to represent these integers
uniquely. (As an indication that the result is not trivial, observe that if some
values occur more frequently than others we may transmit messages more
efficiently by using a code with fewer bits for more frequent characters.)

After defining the input size measure for an algorithm, we define a func-
tion that maps each input size to a predicted resource requirement ‘on that
input size’. The trouble is that there is usually a range of requirements:
some inputs of a given size may be very cheap to deal with, others may be
very expensive. Normally, we determine the requirements of the worst possi-
ble input of each size in order to characterise the behaviour of an algorithm.
Sometimes however, where it is clear that an algorithm is normally far better
than a worst case analysis suggests, we determine the average requirement
over all the inputs of a given size. The analysis of the quick sort algorithm
later in the course will give an example of this.

Simplifying computational detail

To predict the time required for the execution of an algorithm2, we shall at-
tempt to predict how many ‘elementary computational operations’ are per-
formed. The working definition of “elementary” will be that an operation

2We shall concentrate on computation time here; a similar approach can be taken when
analysing things like memory space requirements.

7

requires some constant amount of time to carry out, that is, the time does
not vary with the size of the operands. Everyday examples include adding
two 64-bit real numbers, comparing two 32-bit integers, or moving a 16-bit
integer from one location to another. Outlawed examples include adding two
arbitrary length integers, or searching an arbitrary-length list for an item
of interest. To avoid our analyses becoming dependent on implementation
details, we shall not exactly quantify the constant amounts of time required
for elementary operations. This simplification still allows us to examine the
basic behaviour of algorithms, and to compare alternative algorithms.

As the informal analyses given earlier may have suggested, we shall make
a further abstraction to simplify matters: only the rate of growth of the time
requirement with respect to increasing input size is of interest. Therefore,
instead of aiming to derive a fairly precise formula to express an algorithm’s
time requirements, e.g., T (n) = 10n2 − 2n + 9 elementary operations where
n is the input size, we shall only aim to establish the dominant highest
order term, here 10n2. Moreover, we shall ignore the constant coefficient,
here 10, since constant factors are less significant than the rate of growth
in determining efficiency for large input sizes. Given these simplifications,
we can express formulae for resource requirements concisely using ‘big-O’
notation. The formula

T (n) = O(f(n))

read “T (n) is of order f(n)”, is defined to mean:

there are two constants, c and n0, such that

T (n) ≤ cf(n) for all n ≥ n0

(we assume that none of c, n0, T (n) or f(n) is ever negative). In the example
above where T (n) = 10n2 − 2n + 9, we just write T (n) = O(n2). Here,
f(n) = n2, and c = 10 and n0 = 5 are suitable constants. Note that T (n)
does not have to grow as fast as f(n); saying T (n) = O(f(n)) merely asserts
that T doesn’t grow any faster than f . Usually, the functions f(n) that we see
are of the form nk (where k is a constant), lg n or 2n, or some multiplicative
combination of these, such as n2 lg n or n2n. Note that lg n grows more slowly
than any function of the form nk, for every k > 0 —even when k < 1, and
2n grows more quickly than any function of the form nk. One useful, and
slightly abused, special case is f(n) = 1: the formula T (n) = O(1) is used as
shorthand for “T (n) is bounded by some constant for all n”.

We usually consider that one algorithm is more efficient than another
algorithm if its time requirement has a lower rate of growth. Note that may
not be faster for some input sizes, but the algorithm will be faster for all large

8

enough inputs. When comparing algorithms on the basis of big-O notation
formulae, we must take care that the hidden n0 thresholds and the hidden c
constant factors are not outrageously large. Remember that, for example, a
O(n) time algorithm requiring 1000000n operations is slower than an O(n2)
one requiring n2 operations unless n > 1000000.

Deriving formulae for time requirements

The examples given earlier should indicate that it may be fairly straight-
forward to derive a recursive definition for the time requirement of a given
algorithm. Solving such definitions to obtain an algebraic formula for the
complexity is sometimes a taxing mathematical challenge. However, many
examples are straightforward, and different algorithms may often be treated
using similar methods. We will return to look at some of these techniques
later in the course. For the moment, as an exercise, we derive O-expressions
for the rates of growth of the various recursively defined functions, counting
nodes and leaves of trees, introduced in Lecture Note 1.

Full Trees

The number of leaves in a full binary tree of height n is given by the equa-
tions:

B(0) = 1

B(n + 1) = B(n) + B(n)

We want to derive an algebraic expression for B(n). By induction on n, we
can show that B(n) = 2n. The first equation gives the base case, n = 0.
Using the second equation and the induction hypothesis we can derive the
induction step:

B(n + 1) = B(n) + B(n)

= 2×B(n)

= 2× 2n

= 2n+1

So, B(n) is exponential: B(n) = O(2n).

Spines

The equations for the number of leaves in a spine

S(0) = 1

S(n + 1) = S(n) + 1

9

have a clear solution: S(n) = n + 1. So S(n) = O(n), a linear function — a
formal proof would again use induction.

Balanced trees

The number F (n) of leaves in a slightly unbalanced tree is given by the
following equations:

F (0) = 1

F (1) = 2

F (n + 2) = F (n + 1) + F (n)

This is closely related to the Fibonacci numbers, fib(n), defined by the equa-
tions

fib(0) = 0

fib(1) = 1

fib(n + 2) = fib(n + 1) + fib(n)

Indeed, F (n) = fib(n + 2) (since fib(2) = 1 and fib(3) = 2).

The Fibonacci numbers are related to the golden ratio, φ = 1+
√

5
2

, and its

conjugate, φ̂ = 1−
√

5
2

. These are defined as the roots of the quadratic equation

φ2 = 1 + φ. Numerically, φ = 1.61803 . . ., and φ̂ = −0.61803 The ith

Fibonacci number fib(i) is equal to φi−φ̂i
√

5
(this may be proved by induction

on i). Since |φ̂| is less than 1, the term φ̂i/
√

5 is small, and φi/
√

5 is a good
approximation to fib(i) (rounded to the nearest integer, it is equal to fib(i)).
The upshot, for our present purposes, is that F (n) is also exponential.

Lop-sided trees The least number of leaves in a tree of height n, imbal-
anced at any node by at most a factor of 2, is given by the recurrence

lop(0) = 1

lop(n) = lop(n− 1) + lop(bn/2c)

Solution of this recurrence is beyond the scope of this course. (C) Michael
Fourman 1994-2006

10

