
Products and Records

Michael P. Fourman

February 2, 2010

1 Simple structured types

Tuples

Given a value v1 of type t1 and a value v2 of type t2, we can form a pair,
(v1, v2), containing these values. The type of the pair is t1 * t2. Triples,
quadruples etc are built in an analogous way. To decompose such values we
extend the class of patterns to include tuple patterns, so that (pat1, . . .,
patn) is now a pattern. Note the use of the pattern (i,s) in the following
example:

fun f (i,s) = i + (size s);

This declares a function

int× string
f

- int

Evaluating f (4, "abc"); would produce the value 7. All functions in SML
take a single argument and return a single result. However, as the argument
can be a tuple, and pattern matching allows us to break down a tuple into its
components, syntactically it looks as though a function can take more than
one argument.

Although pattern-matching is a convenient way to access the components
of a tuple, sometimes it is useful to use functions that extract the components.
The components of a pair may be extracted using the “selector functions”,
#1, and #2, shown in the following diagram.

A �
#1

A × B
#2

- B

Our function, f could, equivalently, have been declared as

1



fun f (p: int * string) = #1 p + size (#2 p)

The type constraint is needed; without it, the compiler could not tell that the
argument to f must be a pair. In this example, pattern-matching is clearer.

A function can also return more than one result, as in

fun g s = (size s, s);

If a function takes an argument of type t1 and returns a result of type t2,
then the type of the function is displayed as t1 -> t2. In the examples above,
f: int * string -> int, and g: string -> (int * string).

All values in ML are first-class; they can be passed as arguments, returned
as results, and used as components of other, structured values. Pairs1 are
values and so can be manipulated just like the values of the basic types. As
an example, consider the definition of an infix function ++, for adding two
vectors, component-wise.

infix ++;

fun ((vx, vy) ++ (wx, wy)) =

(vx + wx : real, vy + wy : real);

This function takes a pair of pairs of reals as argument, and returns a pair
of reals as result. If we use it to define a further function, summing three
vectors, we don’t need to decompose each vector into its components.

fun sumvecs (u, v, w) = u ++ v ++ w;

Records

The components of a tuple are unnamed — we retrieve a component by its
position. SML also has a type, called a record, analogous to a C structure,
or Pascal record. To build a record you must specify the field names and the
corresponding values, as in

val point = {x = 3, y = 4, colour = "red"};

Such a value would have type {x: int, y: int, colour: string}. To
decompose such values we extend the definition of a pattern to include record
patterns. The order of the fields is unimportant, and so we could define

fun pointColour {colour = c, x = xp, y = yp} =

c;

1This also applies to values of other types, that we will introduce later. It even applies
to functions, even the built-in ones; they are also first-class values.

2



Applying this function to point would return the value "red". We can also
use a shorthand for record patterns, to introduce variables with the same
names as the labels of the record.

fun pointInfo {colour, x, y} = (colour, x*x + y*y);

Applying pointInfo to point would give the value (red, 25). Records
provide documentation for code, but they make code more verbose and the
”documentation” supplied is sometimes redundant. They may need to be
handled by special-purpose functions, whereas corresponding functions on
tuples could be placed in a library.

2 Functions and pattern matching

So far our elementary patterns have been restricted to variables and larger
patterns constructed using just tuple and record patterns. We now look at
other kinds of pattern. Consider the definition of a function that returns the
first element of a pair:

fun fst (x, y) = x;

It’s clearly important that we give a name to the first component of the pair,
x, as we refer to it in the body of the function. Having to specify a name
for the second component, in this case y, is tedious as it is never used. SML
allows to be used as a wild-card pattern in these cases. This avoids forcing
the programmer to think up pointless names, and indicates to the reader
that this subcomponent is not referred to in the body. For example,

fun fst (x, _) = x;

fun snd (_, y) = y;

When we use pattern-matching against a pattern composed from variables
and wild-cards, to decompose a value into subcomponents, the type system
ensures that such a decomposition always succeeds. There are other cases
where the pattern-matching can fail. The simplest situation where this can
happen is if we allow constants such as integers, booleans and strings as
patterns. For example, consider the following function declaration:

fun f ("abc", true, x) = x + 1;

The pattern only matches values of type string * bool * int where the
first component is the string "abc" and the second component is true. What
happens if you apply f to an argument that doesn’t match this pattern? The
system will raise an exception and return control to the top-level prompt. We

3



will see later in the course how to explicitly raise and catch such exceptions.
If a pattern doesn’t match all values of the type it may be applied to then
the system warns you of this with a message such as

Warning Matches are not exhaustive. Found near ...

The system also warns you if some patterns are redundant, in the sense
that every possible argument will be matched by some earlier pattern. Both
types of warning should be heeded — a well written, robust program will not
generate warnings.

Definition by cases

Often it is useful to define a function by cases. For example, we might use
strings to represent colours. We can then define a function to help choose
our clothes by checking whether two colours clash. If the first colour is
"yellow" and the second one is "brown" then we should (perhaps) return
true. Similarly, we should return true if the colours are "brown" and "red".
Each one of the clashing choices can be expressed as a pattern on pairs. We
extend the syntax for defining functions to allow a number of separate clauses
(a clausal functional declaration):

fun 〈function name〉 〈pattern1〉 = 〈expression1〉
| 〈function name〉 〈pattern2〉 = 〈expression2〉
...
| 〈function name〉 〈patternn〉 = 〈expressionn〉;

A (tasteless) version of the clash function may now be defined by

fun clash ("yellow", "brown") = true

| clash ("brown", "red") = true

| clash _ = false;

When the function is applied to an argument the patterns are tried in se-
quence. If 〈patterni〉 is the first one that matches then 〈expressioni〉 is eval-
uated. Thus in the above example the third clause is only applicable if the
first two don’t match.

Variables and constants

It might seem inefficient to use strings to model colours, and the unwary
might try the following definitions:

4



val red = 1;

val brown = 2;

val yellow = 3;

fun clash (yellow, brown) = true

| clash (brown, red) = true

| clash _ = false;

However, the occurrences of yellow and brown in the patterns will be treated
as variables, not constants. The first clause will always match, binding the
first colour to the variable yellow and the second element of the pair to the
variable brown. This is an easy mistake to make, although in this simple
case the compiler should warn you that the second and third clauses are
redundant. We will see how to introduce constructors, new constants that
can be used in patterns, later in the course when enumerated types are
introduced.

Patterns are linear

Patterns, in SML, are said to be linear. This means that you can’t repeat
a variable in a pattern to indicate that two subcomponents are equal. Thus
you must write

fun testPair (x, y) = if (x = y) then "same" else "different";

instead of

fun testPair (x, x) = "same"

| testPair (_, _) = "different";

Layered patterns

Sometimes you would like to name a component of an argument and name
some of its subcomponents. Layered patterns, using the keyword as to join
two patterns that will both be matched against the same value, allow you to
do this, as in

fun f (x as (y,_), _) = (x, (y,y));

Without layered patterns you would have to write

fun f ((y,z), _) = ((y,z), (y,y));

This definition is rather artificial. However, as the course progresses you
will find many places where layered patterns arise naturally.

5



The case expression

A function may be used to discriminate between different forms of argument.
SML also provides a case expression:

case 〈expression〉 of
〈pattern1〉 => 〈expression1〉

| 〈pattern2〉 => 〈expression2〉
...
| 〈patternn〉 => 〈expressionn〉

Here is an example illustrating its use.

fun check {day, month, year} =

let val leap = year mod 4 = 0

andalso

year mod 100 <> 0

val daysInMonth = case month of

"january" => 30

| "february" => if leap then 29 else 28

(* ... *)

| "december" => 31

| _ => error "month not recognised"

in

day <= daysInMonth

end;

(C) Michael Fourman 1994-2006

6


