
Specification, Implementation, and Use

Michael P. Fourman

February 2, 2010

There are many models for the software life-cycle; this course is not the
place to discuss them. However, they all include phases corresponding to
the specification, implementation, and use, of a software component. In this
note we introduce the SML module system, which supports these activities.

The module system has three parts: signatures, structures, and functors.
In Practical 1, we have already seen examples of signatures, which specify
an interface, and structures, which implement an interface. You were given
a signature, A1, and asked to provide a structure, Answers1, implement-
ing that signature, you used the structure PolyML, using a qualified name,
PolyML.use, for one of its component functions. Functors provide a tool
for separating implementation and use of a software module; they will be
introduced in this note.

We use the example of implementing and using a new type, of complex
numbers, to look at these constructs in more detail1. In Practical 2 you will
perform a couple of similar exercises, implementing two new types: rational
numbers, and approximate real numbers.

Background

A complex number may be written in the form a + ib, as a sum of a real
part, a, and an imaginary part ib. Here, a and b are real numbers. You don’t
need to understand what a complex number is to understand this note (or
to use complex numbers in many applications). We will just apply a few,
straightforward rules for manipulating complex numbers. In particular, we
can just treat i (the, supposedly mysterious, square root of −1) as a symbol
to be manipulated according to the rules below.

Addition (a + ib)+(c + id) = ((a + c) + i(b + d))

1Don’t worry if you don’t know anything about complex numbers; the operations we’ll
need are simple, and are described in detail in this note.

1



Subtraction (a + ib)−(c + id) = ((a− c) + i(b− d))

Multiplication (a + ib)∗(c + id) = ((ac− bd) + i(bc + ad))

Division (a + ib)/(c + id) = ((a + ib) ∗ (c− id)) ∗ 1/(c2 + d2)

Complex numbers may be pictured as points on the plane; a+ ib corresponds
to the point with cartesian coordinates (a, b). This representation is named
after Descartes. We can also use polar coordinates for the same points;
this gives a different representation of the complex numbers that we will
name after another French mathematician, Argand. For this example, we
will implement the arithmetic operations on complex numbers. We do this
twice, using the two different representations.

Specification

The interface we should provide is given by the following ML signature
ComplexSig.

signature ComplexSig =

sig

type complex;

val descartes : {real : real, imag : real} -> complex

and argand : {modulus : real, argument : real} -> complex

and ++ : complex * complex -> complex

and -- : complex * complex -> complex

and ** : complex * complex -> complex

and // : complex * complex -> complex

and X : real * complex -> complex

and == : complex * complex -> bool

and ~~ : complex -> complex

and modulus : complex -> real

and argument: complex -> real

and realpart: complex -> real

and imagpart: complex -> real

end;

The functions descartes and argand will construct complex numbers
from explicit representations. The arithmetic operations, other than scalar

2



multiplication, X, and unary minus, ~~, have been described earlier. The
remaining functions, modulus, argument, realpart, and imagpart, allow us
to construct an explicit representation of a complex number.

Implementation

The structures Descartes provides an implementation of this signature,
based on cartesian co-ordinates. An alternative representation, using po-
lar coordinates to implement the same signature, is given by the structure
Argand. A structure packages together a collection of types and values.
We can access these either by opening the structure, which provides access
to all its components, or by using long names, such as Argand.++. (Long
names are never infix, so we would write Argand.++(x, y) where we might
otherwise write x ++ y.)

Use

When we use complex numbers, we should not be concerned to know which
representation has been used to implement them. We now introduce functors
the ML construct used to separate code that uses a given interface from the
code that provides an implementation of that interface. As an example, we
consider the implementation of 2-dimensional, complex vectors and matrices.

Our code for vectors and matrices will use the interface to complex num-
bers provided by ComplexSig. The specification of our vector package is
provided by the signature VectorSig.

3



structure Descartes (*: ComplexSig*) =

struct

type complex = real * real;

fun r X (a,b) : complex = (r*a, r*b)

fun (a,b) ++ (c,d): complex = (a+c, b+d)

and (a,b) -- (c,d): complex = (a-c, b-d)

and (a,b) ** (c,d): complex = (a*c - b*d, b*c + a*d)

and (a,b) // (c,d): complex =

let val factor = 1.0/(c*c + d*d)

in

factor X (a,b) ** (c,~d)

end

and ~~(a,b) : complex = (~a,~b)

and (a,b) == (c,d) = (a=c) andalso (b=d)

val pi = 4.0 * arctan 1.0;

fun descartes{real, imag} = (real,imag)

and argand{modulus, argument} = modulus X (cos argument, sin argument)

and realpart (real, _) = real

and imagpart (_, imag) = imag

and modulus (r, i) = sqrt(r*r + i*i)

and argument(r, i) =

if r = 0.0

then if i < 0.0 then ~pi/2.0

else pi/2.0

else arctan(i/r)

end;

Figure 1: Cartesian representation of Complex numbers

4



structure Argand : ComplexSig =

struct

type complex = real * real;

fun r X (a, m) : complex = (a, r*m)

fun (a, m) ** (a’, m’): complex = (a + a’, m * m’)

and (a, m) // (a’, m’): complex = (a - a’, m / m’)

and ~~(a, m) : complex = (a, ~m)

and (a,b) == (c,d) = (a=c) andalso (b=d)

val pi = 4.0 * arctan 1.0;

fun descartes {real=r, imag=i} =

let val argument =

if r = 0.0

then if i < 0.0 then ~pi/2.0

else pi/2.0

else arctan(i/r)

val modulus = sqrt(r*r + i*i)

in

(argument, modulus)

end

and argand {modulus, argument} = (argument, modulus)

and realpart (a, m) = m * cos a

and imagpart (a, m) = m * sin a

and modulus (a, m) = m

and argument (a, m) = a

fun x ++ y = let val r = realpart x + realpart y

and i = imagpart x + imagpart y

in

descartes{real = r, imag = i}

end

fun x -- y = x ++ (~~ y)

end;

Figure 2: Polar representation of Complex numbers

5



infix dot;

signature VectorSig =

sig

type scalar

type vector

type matrix

val vector: scalar * scalar -> vector

val matrix: vector * vector -> matrix

val scale : scalar * vector -> vector

val dot : vector * vector -> scalar

val apply : matrix * vector -> vector

end;

The implementation will use the operations specified in ComplexSig. It
uses the ML functor declaration. This allows us to write the code that
we would write to implement VectorSig if we had already implemented a
structure Complex: ComplexSig; it allows us to write this code before we
implement ComplexSig — even before we choose which representation we
will use to implement ComplexSig.

functor VECTOR( structure Complex : ComplexSig) : VectorSig =

struct

open Complex;

type scalar = complex

type vector = complex * complex

type matrix = vector * vector

fun vector (x,y) = (x,y)

fun matrix (a,b) = (a,b)

fun scale (s,(a,b)) = vector (s ** a, s ** b)

fun (a,b) dot (a’,b’) = a ** a’ ++ b ** b’

fun apply ((a,b),v) = vector (a dot v, b dot v)

end;

The functor VECTOR can be compiled before we implement complex num-
bers. Then, when we have an implementation, say Argand: ComplexSig, we

6



can produce a structure, implementing VectorSig, by applying the functor,
VECTOR, to the structure, Argand.

structure ArgandVec = VECTOR (structure Complex = Argand);

We can also apply the functor to Descartes to produce a vector package
based on our other implementation of complex numbers.

This module system will allow us to build complex software from inter-
changeable components. It provides the tools we will need to experiment
with different implementations of various datatypes.

Pragmatics

Even for a relatively small example, such as the one presented in this note,
managing the various pieces of code, compiling them in the right order, and
making sure we recompile the appropriate parts when we make changes,
quickly becomes tedious. PolyML provides a make utility to support this
process. By placing the various code components in separate files, in a single
directory, each with a name corresponding to the name of the signature,
structure, or functor it defines, we can recompile a structure, S, by typing
PolyML.make "S";. If the sources of any of the components on which S

depends have been changed, these components will be recompiled first.
The examples in this note will be found in the directory

/public/homepages/mfourman/web/teaching/mlCourse/doc/ml/Complex.
(C) Michael Fourman 1994-2006

7


