
Stacks and Queues

Michael P. Fourman

February 2, 2010

In previous notes and practicals, we have used products, records and
lists to build representations of a variety of different kinds of data: rational
numbers, polynomials, sets. We have used signatures to specify interfaces for
manipulating various kinds of data, and seen that we can sometimes give a
variety of different implementations for the same interface.

Signatures allow us to separate the specification of a package from its
implementation. However, our treatment so far has not given such a clear
separation of implementation and use. The user of a package can by-pass the
interface, and access the implementation directly. In this note we introduce
the ML abstype construct, which allows us to prevent this. We will intro-
duce new interfaces, and implementations, for various types of queue. These
illustrate the use of abstract types, and will provide a basis for the study of
more refined implementations, covered later in the course.

1 The Need for Abstract Data Types

In Lecture Note 6, we described a package for manipulating sets. Sets were
represented by lists:

type Set = int list

Some of our set operations relied on the “fact” that lists representing sets
contain no duplicates; but any list may be passed as a set, and a programmer
could all too easily pass a list with duplicates into the system — with un-
predictable consequences. We could have used a datatype declaration, such
as

datatype Set = Set of int list

to make this kind of error less likely. But, it would still be possible (and
sometimes tempting) to by-pass the interface and make direct use of the
representation. What is wrong with accessing implementations directly? We
begin this note by discussing three aspects of this question.

1



Modularity Later in the course we will introduce other implementations of
sets. Suppose we have written a client program that uses the IntSet package,
and wish to use a different set package, for example, one implemented using a
binary search tree. If the client program manipulated the list representations
of sets directly, it would have to be changed to use the new representation of
sets.

A client program that only manipulated sets using the functions provided
in the Set signature would be easier to maintain. The task of writing the
program might be slightly harder, as all of the operations you might wish to
perform on a set would have to be expressed in terms of the given functions.
The temptation to drop down to the underlying representation to implement
a function may be quite strong. However, if one can resist this temptation,
the resulting program will have the desirable property of being independent
of the representation chosen to implement the set package. As long as the
same set of functions is provided for each choice of representation then your
program should work unchanged.

Of course you might start off with good intentions, but then accidentally
exploit your knowledge of the particular representation, a list in this case. It
would be good if the system could prevent us from making such mistakes.

Equality Consider the two sets {1, 2, 3} and {3, 2, 1}, as sets, they are
identical. So the values, Set [1,2,3] and Set [3,2,1], represent the same
set. However, two values of a datatype are equal if they are built using the
same constructor and the underlying values are the same. The lists [1,2,3]
and [3,2,1] are not equal, and so, as far as our programs are concerned,
neither are the two sets! There is a mismatch between the equality we would
like to have defined on sets, and the equality provided by the system. This
is not the system’s fault — it doesn’t know what a set is. The problem
arises whenever a representation allows a number of different data values to
represent the same logical value. In our particular example, each permutation
of the values in a list represents the same set.

One solution would be to introduce another invariant, and always repre-
sent our sets by lists in a given order. Then each set would have only one
representation. This might be a good solution in this case, as we could ex-
ploit the extra invariant to improve the efficiency of our package. However,
in other examples it might be costly to maintain such a canonical represen-
tation, that is, a choice of particular representation for each value. Another
solution is to define an equality function that allows for the possibly different
permutations of the elements and to use this function for all our set equality
tests. Unfortunately, it is very easy to accidentally write S1 = S2 some-

2



where in our client code, thus introducing a subtle error. From the client
program’s point of view, this ‘equality’ test is non-deterministic; given (two
representations of) the same set, as S1 and S2, it sometimes returns true,
and sometimes false! Fortunately, ML provides tools to eradicate such
aberrations. Non-deterministic code (in other languages) leads to madness,
and explains a thriving market in “debuggers” that allow the programmer
to examine low-level details of underlying representations, in an effort to
understand what their code is doing.

Safety The set package can exploit the fact that each set is represented by
a list without duplicates. For example, if we are trying to remove an element
e from a set represented by a list s we can stop as soon as we find the first
occurrence of e. There can’t be any others. Furthermore, we can prove
that every set constructed using the set functions provided by the package is
represented by a list with no duplicates, and so this optimisation is sound.
Unfortunately, if the user of the set package is allowed to construct sets using
the Set constructor explicitly then this “invariant” can break down, as in Set

[1,1,1,1].

Let us summarise our discussion:

Safety In some cases the implementer of a package would like to force a pro-
grammer using the package to use only a given collection of functions
to manipulate a type — rather than allowing him/her direct access to
the representation. This allows the implementation to exploit invari-
ants preserved by these functions, that might be destroyed by access
to the representation.

Modularity In some cases, we, as programmers, would like the system to
check that we are only using a given collection of functions to access
a package. If we adhere to this discipline, we can replace one imple-
mentation of a package by another, without altering our program. A
mechanical check can ensure that we don’t inadvertently break the
rules.

Equality A final point is that the notion of equality provided by the system
may not agree with notion of equality appropriate for the objects we
want to represent. In such cases we would like to hide the system
equality function.

3



2 The abstype Construct

Representing a set directly as a list allows us to treat any list as a set. If,
instead, we use a datatype declaration,

datatype Set = Set of int list

we introduce a new type. We can use the constructor Set to construct sets
from lists and, using pattern-matching, to extract lists from sets. Hiding
the constructor from the user would bar this access to the representation. Of
course, to implement the operations on sets we need access to the constructor,
so we need a means to limit the scope of the constructor. We can do this using
signatures and structures. Consider the implementation given in Figure 1.

Since the signature SetSig doesn’t include the constructor Set, the con-
structor is not visible when we open the structure.

• Preventing access to the constructor Set guarantees that the user can-
not create values of type Set that violate our invariants.

• Since Set is a new type, the only operations we can use for manipulating
it are those provided by the interface. Unfortunately, there is one
exception to this rule:

• Equality on Set, interpreted as equality of the underlying represen-
tations, cannot be hidden by restricting the signature. Some imple-
mentations may use a canonical representation, others will not. Since
the difference is visible to the user, we lose some of the benefits of
abstraction.

What we need, is a construct that will limit the scope of constructors, and
hide the equality function on representations. The abstype declaration does
precisely this. It is like a datatype declaration except that the constructors
of the datatype, and the equality test on members of the type, are only in
scope within a range of declarations (the declarations that provide the inter-
face to the type). If we want an equality function, it must be implemented
explicitly. An implementation of SetSig using an abstract type is given in
Figure 2 Here, abstype ... with ... end forms a construct analogous
to local ... in ... end. The implementation of the type Set, given be-
tween abstype and with is only visible as far as the corresponding end.
The declarations between with and end are visible outside this block, but
the constructor Set, and the equality test on sets, are not. Values of type
Set will not be displayed at the top-level, as this would give the game away
about the underlying representation. You need to ensure that the functions
defined between with and end are rich enough for your purposes. Once you

4



structure IntSet1 : SetSig =

struct

type Item = int

datatype Set = Set of Item list

val empty = Set []

fun isEmpty (Set []) = true

| isEmpty _ = false

fun member (Set []) e = false

| member (Set(h :: t)) e = (e = h) orelse member (Set t) e;

fun insert(e, s as Set xs) = if member s e then s

else Set(e :: xs);

fun delete(e, Set []) = []

| delete(e, Set(h::t)) = if e = h then Set t

else insert(h, delete(e, Set t));

fun union(Set [] , s) = s

| union(Set(h::t), s) = insert(h, union(Set t, s));

fun intersect(Set [], s) = Set []

| intersect(Set(h::t), s) =

if member s h then insert(h, intersect(Set t, s)

else intersect(Set t, s);

end;

Figure 1: another Implementation of Sets

5



structure AbsIntSet : SetSig =

struct

type Item = int

abstype Set = Set of Item list

with

val empty = Set []

fun isEmpty (Set []) = true

| isEmpty _ = false

fun member (Set []) e = false

| member (Set(h :: t)) e = (e = h) orelse member (Set t) e;

fun insert(e, s as Set xs) = if member s e then s

else Set(e :: xs);

fun delete(e, Set []) = []

| delete(e, Set(h::t)) = if e = h then Set t

else insert(h, delete(e, Set t));

fun union(Set [] , s) = s

| union(Set(h::t), s) = insert(h, union(Set t, s));

fun intersect(Set [], s) = Set []

| intersect(Set(h::t), s) =

if member s h then insert(h, intersect(Set t, s)

else intersect(Set t, s);

end

end;

Figure 2: Sets as an Abstract Type

6



have passed the end the barriers are up! You cannot peek inside the repre-
sentation later if you realise that one of the functions you need cannot be
expressed in terms of the interface. A type whose representation is hidden, is
known as an abstract data type (ADT). The ML abstype declaration allows
the user to implement secure abstract data types.

You should be able to replace one abstract type by another, based on a
different representation, as long as the interface remains the same. The fewer
components we have in the interface, the easier it is to change the represen-
tation. When we design the interface to an abstract type, there is a delicate
balancing act to perform: placing too few functions in the interface may lead
to problems expressing an operation in terms of the functions provided; too
rich an interface creates a lot of unnecessary work every time you create a
new implementation of the type.

3 Examples

We now look at some further examples of abstract data-types. We specify
and implement various kinds of queue. A queue is a data-structure used for
storing and retrieving data items. Figure 3 gives a signature that will match
many different implementations of queues. The name comes from an anal-

signature QueueSig =

sig

type Item

type Queue

val empty : Queue

val isEmpty : Queue -> bool

val enq : Queue * Item -> Queue

val deq : Queue -> Queue * Item

end;

Figure 3: A signature for Queues

ogy with queues formed by people waiting for busses, hamburgers, theatre
tickets, or what have you. Just as with these examples, our queues allow for
arrivals, enqueue, enq, and departures, dequeue, deq; a queue represents a
bag1 of items, enqueue adds an item to this bag, dequeue chooses an item
to remove from the queue (if it is not empty). Just as with human queues,

1Bags are like sets, but they allow repetition. Sometimes they are called multi-sets.

7



our queues will vary according to the rule used to choose the next item to
remove from the queue. It is traditional to give the basic operations different
names, depending on the rule we are using; this can help to avoid confusion.
However, using the general signature for different kinds of queue will allow
us to make our code more modular, later, when we discuss algorithms based
on the different kinds of queue.

We will introduce three different rules:

FIFO Queue First in, first out; this is the rule followed in the well-ordered,
ideal, queue in which newcomers stand at the back, and service is from
the front. When we talk about a queue without further qualification
this is the rule we have in mind; we use the signature QueueSig for
these.

Stack Stacks follow a rule that goes to the the other extreme: last in, first
out (LIFO) the last arrival is served first. Stacks are widely used in
computer science; but are not popular as queues in the real world. The
traditional names for the operations on stacks are push, (enqueue),
and pop, (dequeue); they are said to derive from the analogy with the
spring-loaded stack of plates found in cafeteria. We will use these tra-
ditional names, to avoid confusion, when discussing stacks and queues
informally, but, not in our code, as this would make it harder to re-use.

Priority Queue Items are ordered by priority. The queue member of high-
est priority is served first, irrespective of the order of arrivals. This rule
requires some structure on the type of items: an ordering, to determine
the relative priorities of different items.

We will give implementations of all three kinds of queue, using lists to build
our underlying representations. We begin with stacks, because these are the
simplest.

Stack An implementation is given in Figure 4, placing items on the stack
is implemented by cons, and removing them is implemented by splitting a
list into head and tail. This amounts to a renaming, and repackaging of the
basic operations on lists. Each of the operations takes O(1) time.

Queue A queue can also be represented using a list, as in Figure 5. The
head of the queue is the head of the list. When we add a new item to the
queue, we have to do some work to send it to the back; queue insertion takes
O(n) time due to the use of append. An alternative representation for
queues, given in Figure 6 uses a pair of lists. We remove elements from the

8



structure Stack =

struct

exception Deq;

type Item = int

abstype Queue = Q of int list

with

val empty = Q []

fun isEmpty (Q []) = true

| isEmpty _ = false

fun enq(Q s, e) = Q(e :: s)

fun deq (Q(h :: t)) = (Q t, h)

| deq _ = raise Deq

end

end;

Figure 4: An implementation of Stacks

structure Queue1:QueueSig =

struct

exception Deq

type Item = int

abstype Queue = Q of Item list

with

val empty = Q []

fun isEmpty (Q []) = true

| isEmpty _ = false

fun enq(Q q, e) = Q(q @ [e])

fun deq(Q (h :: t)) = (Q t, h)

| deq _ = raise Deq

end

end;

Figure 5: Implementing a Queue using a list

9



front of the second list and insert elements to the front of the first. If the
second list is empty, we replace it by the (reversed) contents of the first: The

structure Queue2:QueueSig =

struct

exception Deq

type Item = int

abstype Queue = Q of (Item list * Item list)

with

val empty = Q ([], [])

fun isEmpty(Q ([], []))= true

| isEmpty _ = false

fun enq(Q(inp, out), e) =

Q(e :: inp, out)

fun deq(Q(inp, h :: t)) = (Q(inp, t), h)

| deq(Q([], [])) = raise Deq

| deq(Q(inp, [])) = deq(Q([], rev inp))

end

end;

Figure 6: Implementing a Queue using two lists

analysis of this implementation of the function deq introduces a new idea.
When you remove an element from the queue, it normally takes O(1) time.
However, when the “out” list is empty, the cost of a call to deq is clearly
O(n) due to the use of rev. There is more to be said: since each element
placed on the queue, and later removed, is passed from one list to the other
exactly once, the average time for each operation is constant. We say the
amortised cost of each operation is O(1).

Priority Queue To implement a priority queue, we keep a list in sorted
order, highest priority at the head. This makes the code for deq simple, but
means that we need an auxiliary function, insert, to place an item in the
correct position in a list when we call enq. Figure 7 gives an implementation
of a priority queue containing integers — where larger integers have higher
priority. Since insert must traverse the list of items waiting in the queue,
the complexity of enq is O(n), where n is the number of items in the queue.
Later, we will see much better implementations of priority queues.

10



structure IntPQueue:QueueSig =

struct

type Item = int

exception Deq

fun insert e [] = [e]:Item list

| insert e (h :: t) =

if e > h then e :: h :: t

else h :: insert e t

abstype Queue = Q of Item list

with

val empty = Q []

fun isEmpty (Q []) = true

| isEmpty _ = false

fun enq(Q q, e) = Q(insert e q)

fun deq(Q (h :: t)) = (Q t, h)

| deq _ = raise Deq

end

end;

Figure 7: Implementing a Priority Queue using a sorted list

11



4 Types and Abstraction

Abstraction is important in programming as it allows us to manage complex-
ity. In ML, abstraction is provided by hiding information: using signatures,
and datatypes, we can hide some aspects of the implementation of a pack-
age; the abstype declaration provides an alternative mechanism for hiding
information.

Using signatures is a more flexible mechanism. But it does not allow us to
hide the equality test on a type. We need to do this when there are multiple
concrete representations of a single abstract value. Furthermore, we should
do it if there is any possibility that we may want to use such a representation
in the future; otherwise, any client code may make use of the equality, and
present porting problems when we change our implementation.

Our implementations of stacks and queues of integer could clearly be
mimicked for any type of item. Indeed, we could make the Queue type
polymorphic; we can code the implementation with no knowledge of the
type of item that will be stored in the queue. However, our implementation
of priority queues depends on the priority ordering between elements, so
we can’t make this type of queue polymorphic. For this reason, we chose a
monomorphic Queue type for our signature. Later, in Lecture Note 12, we will
introduce ML functors, which will allow us to give a general implementations
of queues and stacks, parameterised on a type of item; and an implementation
of priority queues, parameterised on a type and a priority ordering.

5 Specification

We have presented signatures as specifications, and so they are. The exam-
ples of this note make it clear that a signature on its own is not a sufficient
specification; a queue is not acceptable as an implementation of a stack –
although the signatures are the same.

A fuller specification of a stack would include properties that the various
functions in the interface should satisfy. For example, the equation

pop(push(s, e)) = (s, e)

should be true for any stack s, and any item e. In general, the corresponding
equation for queues

deq(enq(q, e)) = (q, e)

would not be valid. In fact, it is only valid when q is empty, or has e

at every point in the queue, so it is easy to give a counter example. Such a

12



counterexample would be grounds for rejecting a queue as an implementation
of a stack.

Similarly, a queue implementation should have the property that if q is a
non-empty queue, and

(q′, e′) = deq(q)

then
deq(enq(q, e)) = (enq(q′, e), e′)

but the interpretation of equality here is subtle: the two expressions may not
give the same representation, but they should represent the same queue.

Add here specifications of stacks and queues.
Giving correct, concise, and comprehensible specifications is hard. Show-

ing that a given implementation satisfies the properties specified is sometimes
harder. Often, the best we can do is to use straightforward implementations,
such as those given in this note, as specifications of the required behaviour.
We can then attempt to verify that other, more recondite, implementations
are indistinguishable from these prototypes. We will return to these issues
later in the course. (C) Michael Fourman 1994-2006

13


