Sample Exam

Michael P. Fourman

February 2, 2010

1 Introduction

This document contains information concerning the conduct of the mid-term
examination, and some sample questions, representative of those that will be
set.

2 Information

The mid-term examination for this course will be held, as advertised, on
Thursday, April 14th, during the normal lecture period.

e The examination will be held in the normal lecture venue, Ross lecture
theatre.

e The examination will last 60 minutes, including five minutes reading
time; it will start at 12.00 prompt, and finish at 1.00pm.

e Please deposit all books and bags at the front of the lecture theatre.

e Ensure that you are seated by 11.55am.

3 Sample Questions

The examination will contain one short question (worth 5 marks), and three
longer questions. You should attempt the short question, and only two of
the three longer questions, each of which will be worth 10 marks.

Short Question 5 marks
Give the responses of the ML system to the following sequence of dec-

larations
val a = 1;
val b = 2;

fun f a = a + b;

val b = 3;
f b;
1. Long Question 10 marks

The following datatype can be used to represent trees whose nodes can
have an arbitrary number of children.

datatype ’a Tree = Tree of ’a * ’a Tree list

(a) What tree does the following expression denote (i.e draw a pic-
ture):

Tree(1, [Tree(2, []), Tree(3, [Tree(4,[])])])

(b) Define a function to calculate the number of leaves in such a tree.

(c) We can assign a level to each node in a tree as follows. The node
at the root is at level 1. Its children are at level 2. Their children
are at level 3 and so on.

Suppose we are interested in trees where an internal node at level n

always has exactly n children. Define a function check : ’a Tree ->bool
that checks whether a given tree has this property.

2. Long Question 10 marks
The EQueue signature is like the signature Queue, but is extended with
an additional operation multiple enqueue, menq: (Item 1list * Queue) -> Queue,
intended to add a number of items (in an arbitrary order) to the queue
in a single operation.

signature EQueue =
sig

type Item

type Queue

val empty : Queue

val enq : (Item * Queue) -> Queue

val deq : Queue -> (Item * Queue)

val menq: (Item list * Queue) -> Queue
end

An implementation of a stack, including this operation, uses the type
declaration

type Queue = Item list list
the operations empty and menq are implemented as follows:

val empty = []
fun menq(items, q) = items :: q

(a) Complete the following declarations of the functions enq and deq
for this implementation

fun enq(item, [
| eng(item, (h :: t))

fun deq((h :: t) :: r)

| deq([] :: 1) =
| deq [=
(b) What is the complexity of the three operations
1. enq,
ii. deq,
iii. menq

for this implementation?

3. Long Question 10 marks
An implementation of sets of integers is designed to represent a set
by a list without repetitions, kept in increasing order. Here is the
function union : Set*Set -> Set from this implementation

fun union(a, []1) = a
| union([], b) =D
| union(ah :: at, bh :: bt) =
if ah < bh then ah :: union(at, bh :: bt)
else if ah = bh then ah :: union(at, bt)
else bh :: union(ah :: at, bt)

(a) What is the complexity of this implementation of union?

(b) Give an implementation of the operation insert : (int*Set) ->Set
compatible with this representation

(¢) Give an O(n) implementation of the operation intersect : Set*Set -> Set,
compatible with this representation.

(C) Michael Fourman 1994-2006

