
SML Modules

Michael P. Fourman

February 2, 2010

In earlier lectures, we have discussed the use of signatures and structures
to specify and group together related types and functions. In this note we
introduce a final component of the ML modules system, functors, which sup-
port “top-down” software development, and the implementation of reusable
code.

We begin with a brief review of signatures and structures, then introduce
functors as a mechanism for code reuse, and finally discuss the use of functors
in software development.

1 Signatures and Structures

As we have seen, an implementation of a data-structure, such as a queue,
provides a type, together with a collection of functions. We can group to-
gether a collection of values using a record. However, to provide a queue
package, we need to group together some values and some types. To do this
we need a new kind of structuring mechanism, a structure. Values have types
associated with them and, analogously, structures have signatures.

We can access the components of a structure using a qualified name.
Thus IntQueue.empty would represent the empty queue, and the function
to add an element to a queue could be accessed as IntQueue.enq (e.g.
IntQueue.enq(1, IntQueue.empty)). Structures are not values. We can-
not pass them to other functions, embed them in other values etc.

Signatures can be used to specify what we require of a structure. A
structure is an implementation of, or matches a signature provided it declares
the specified types and values (in any order). Signatures are like types: a
most general signature is inferred for each structure, just as a most general
type is inferred for each value; just as we can constrain the type inferred for a
value using a type constraint, we can constrain the signature for a structure
using a signature constraint. We can use as signature to hide values and

1

constructors, used to implement the structure, that should not be visible to
the outside world.

2 Reusable Code

Functions such as length are polymorphic; we can apply the length function
to a list of any type of value. Similarly, we could easily use lists to provide
a polymorphic implementation of stacks; to implement the stack operations,
we don’t need to know what type of value is being manipulated. Life is not
always so easy.

Consider the example of a Priority Queue. Our implementation of a
priority queue of integers as an ordered list depends on the type of item in
the queue, and, crucially, on the priority ordering we choose. Clearly we
could use the “same” idea to implement other priority queues. We would
like to parameterise our implementation, on a type of item, and a chosen
priority ordering.

Given a type and an ordering on that type:

type Item

val > : Item * Item -> bool

we can implement a priority queue, using the given predicate (which we
assume is a total ordering), as the priority order. The result is a structure,
containing a new type representing the queue and a collection of operations
that act on this type. From a collection of types an values (a structure) we
construct a new structure; we express this construction as an ML functor.
Just as a function takes a value and produces a new value, so a functor takes
a structure and produces a new structure. We can use the code for IntPQ to
implement the priority queue construction:

2

functor PQUEUE(type Item

val > : Item * Item -> bool

):QueueSig =

struct

type Item = Item

exception Deq

fun insert e [] = [e]:Item list

| insert e (h :: t) =

if e > h then e :: h :: t

else h :: insert e t

abstype Queue = Q of Item list

with

val empty = Q []

fun isEmpty (Q []) = true

| isEmpty _ = false

fun enq(Q q, e) = Q(insert e q)

fun deq(Q(h :: t)) = (Q t, h)

| deq _ = raise Deq

end

end;

The syntax for functors uses a new keyword, functor. The functor name
is followed by a list of formal parameters, and then a body just like that of
a structure declaration. In the declaration of PQUEUE the formal parameters
are specified as types and values. Structures, each constrained by a signature,
can also be introduced as formal parameters to functors; we will see examples
of this later.

How can we use this functor? We provide appropriate types and values to
match the formal parameters. Suppose we want to work with queues of
integers, greater integers having higher priority, we apply the functor PQUEUE
as follows

structure IntPQ = PQUEUE(type Item = int

val op > = op > : int * int -> bool)

The structure IntPQ behaves just like our earlier implementation. But now
the code is reusable; we can create many different argument structures—and
so many different priority queues—without rewriting the code implementing
the priority queue. Using functors we can write reusable code to implement
datastructures that depend on a collection of types and values.

3

If, for example, we want a queue of pairs of integers, with a particular
priority ordering, this could be given by

4

local

fun higher((x,y), (x’,y’)) = (x:int) > x’

orelse (x = x’ andalso (y:int) > y’)

in

structure PairPQ = PQUEUE(type Item = int*int val op > = higher)

end

We can also apply the functor directly to a structure that provides the ap-
propriate parameter types and values. We can apply the functor PQUEUE to
any structure that matches the signature OrdSig

signature OrdSig =

sig

type Item

val > : Item * Item -> bool

end;

For example, we could package various operations on integers in a structure
IntItem

infix 4 ==

structure IntItem =

struct

type Item = int

val op == = (op = : int * int -> bool)

val op > = (op > : int * int -> bool)

end;

and then can apply the functor PQUEUE to this structure

structure IntPQ = PQUEUE(IntItem)

Instead of providing arguments to functors piecemeal, it is often more con-
venient to implement structures, such as IntItem, that will match a variety
of signatures, and so can be used in a wide variety of contexts.

3 Structured Software Development

As well as supporting the development of reusable code, functors provide a
mechanism for documenting and controlling the dependencies between soft-
ware components. To illustrate this we revisit the stack-based evaluator for
expressions introduced in Practical 4.

The code given in the appendix to Practical 4 consists of five inter-related
structures; the implementation of one structure uses types and values pro-
vided by another. In this code, the dependencies are expressed using qualified

5

names. Although this is a simple system, it requires close examination of the
code, and a moment’s thought, to determine the right order in which to com-
pile the various structures. It probably took you some time to realise that,
for the purposes of Practical 4, you only needed to look at one structure
Expn.

Using functors, we can make the dependencies explicit. Here is the code
needed to build the structure TopLevel from a collection of functors.

local

structure Expn = EXPN()

structure Environment = ENVIRONMENT()

structure Machine =

MACHINE(structure Environment = Environment)

structure Compile =

COMPILE(structure Machine = Machine

and Expn = Expn)

in

structure TopLevel =

TOPLEVEL(structure Machine = Machine

and Compile = Compile

and Environment = Environment

and Expn = Expn)

end;

The dependencies are made explicit: Expn and Environment have no de-
pendencies, Machine depends on Environment, Compile depends on Machine

and Expn, and TopLevel depends on everything else. Moreover, the code for
the various functors can be written and modified independently, provided
the interfaces are not changed. The language of functors can also help in
specifying a coding task. For example, if in Practical 4 you had been asked
to implement a functor with header

functor OPTIMISE(structure Expn:ExpnSig):OptimiseSig

you would have known immediately that only the signature ExpnSig was
relevant to your task.

We use the rest of this note to look in more detail at the implementation
of this example. The example provides code modelling the compilation and
execution of code for a simple stack machine. The source language for the
compiler consists of algebraic expressions.

6

Specification

We begin with the interfaces, given by signatures that will be used to spec-
ify the formal parameters to our functors. Starting at the beginning, the
datatype Expn representing expressions is declared in a structure of its own.
The signature carries a complete description of the type—this is the type we
want; nothing else will do.

infixr 6 ** infixr 4 ++ ;

signature ExpnSig = sig

datatype Expn =

Id of string (* identifiers *)

| Lit of int (* literals *)

| op ++ of Expn * Expn (* addition *)

| op ** of Expn * Expn (* multiplication *)

end;

The system we are modelling will allow us to make a sequence of decla-
rations, analogous to ML val declarations. A declaration is represented as
a string*Expn pair. The TopLevel structure will provide a function that
compiles a list of declarations to produce an environment, together with a
structure Expn representing expressions, an environment type, and a function
to allow the user to lookup the values of identifiers in the environment. All
this is specified in the signature TopLevelSig

signature TopLevelSig =

sig

structure Expn : ExpnSig

type Environment

val compile : (string * Expn.Expn) list -> Environment

val lookup : Environment -> string -> int

end

The Environment will be implemented by a structure Environment. This
will be used by other modules that will need access to an empty environment,
and a function to add new bindings to the environment, as well as the lookup
function already mentioned.

7

signature EnvironmentSig =

sig

type Environment

val empty : Environment

val lookup : Environment -> string -> int

val enter : (string*int) * Environment -> Environment

end

The stack machine is modelled by the structure Machine this provides
a type of Action, the primitive machine instructions, and a function that
produces the result of executing a sequence of actions in a given environment

signature MachineSig =

sig

type Environment

datatype Action = Add | Mul

| PushLit of int

| PushVal of string

val execute : Environment ->

Action list -> int

end

The compiler produces machine code for a given expression.

signature CompileSig =

sig

type Expn

type Action

val code : Expn -> Action list

end;

Each signature includes any types (except the built-in types) used in the
types of the values it declares. This makes the signatures self-contained.

Implementation

We don’t want to dwell on the details of the code used to implement the
system—it uses tree traversal and lists in a straightforward way, and doesn’t
introduce any new ideas—but the functor TOPLEVEL does illustrate a subtlety
that often arises when using functors and structures. We begin with the more-
straightforward examples. The code is just like that given in the appendix

8

to Practical 4. It is described there.

infixr 6 ** infixr 4 ++ ;

functor EXPN() = struct

datatype Expn =

Id of string (* identifiers *)

| Lit of int (* literals *)

| op ++ of Expn * Expn (* addition *)

| op ** of Expn * Expn (* multiplication *)

end;

functor ENVIRONMENT():EnvironmentSig =

struct

exception Lookup

type Environment = (string * int) list

val empty = []

fun lookup ((k,e)::t) key = if(k = key)then e

else lookup t key

| lookup _ _ = raise Lookup

fun enter (entry, entries) = entry :: entries

end;

9

functor MACHINE(structure Environment:EnvironmentSig) =

struct

type Environment = Environment.Environment

datatype Action = PushLit of int

| PushVal of string

| Mul

| Add

fun execute env code =

let exception Eval

fun v s = Environment.lookup env s

fun run(args, PushLit n :: ops) = run(n :: args, ops)

| run(args, PushVal e :: ops) = run(v e :: args, ops)

| run(a::b::args, Mul :: ops) = run(a*b :: args, ops)

| run(a::b::args, Add :: ops) = run(a+b :: args, ops)

| run([result], []) = result

| run _ = raise Eval

in

run([], code)

end

end

infixr 4 ++

infixr 6 **;

functor COMPILE(structure Expn:ExpnSig

and Machine:MachineSig

):CompileSig =

struct

open Expn Machine

fun codeacc (Id s, rest) = PushVal s :: rest

| codeacc (Lit n, rest) = PushLit n :: rest

| codeacc (a ++ b, rest) = codeacc(a, codeacc(b, Add :: rest))

| codeacc (a ** b, rest) = codeacc(a, codeacc(b, Mul :: rest))

fun code expn = codeacc(expn, [])

end;

10

functor TOPLEVEL(

structure Machine: MachineSig

and Compile: CompileSig

and Environment: EnvironmentSig

and Expn : ExpnSig

sharing type Compile.Action = Machine.Action

sharing type Environment.Environment = Machine.Environment

sharing type Compile.Expn = Expn.Expn

):TopLevelSig = struct

structure Expn = Expn

type Environment = Environment.Environment

val lookup = Environment.lookup

local

fun adddecs ((s,e) :: decs) env =

let val v = Machine.execute env (Compile.code e)

in adddecs decs (Environment.enter((s,v), env)) end

| adddecs [] env = env

in

fun compile decs = adddecs decs Environment.empty

end

end;

The parameter specification for the TOPLEVEL functor includes a number
of sharing constraints. This is the subtlety we spoke of: consider the following
line of code

v = Machine.execute(env)(Compile.code(e))

From the signatures MachineSig and CompileSig we see that types of the
functions are

Machine.execute : Environment -> Action list -> int

Compile.code : Expn -> Action list

The signatures MachineSig and CompileSig both include a type called
Action, but there is no guarantee that implementations of these signatures
will both use the same implementation for this type. However, when we
write the line of code given above, we certainly intend that the functor will
only be applied to structures, MachineSig and CompileSig, that use the
same implementation for the type Action. The sharing constraint tells the
compiler that this is what we intend (so it can type check the code), and
when we apply the functor the system checks that the constraining is satis-
fied. Unexpected type errors when developing a new functor may result from

11

a missing sharing constraint.

Modules and Abstraction

Functors provide yet another abstraction mechanism: when we write the
body of a functor we can only rely on the specification of the formal parameters—
there is no implementation. So if we always use functors, and always access
our abstract data types via formal parameters, we don’t need to use abstype
as a extra abstraction barrier. However, using the abstype mechanism is the
only way to erect an impregnable barrier in ML. We will make our imple-
mentations of datastructures such as queues abstract using abstype; when
using functors to organise the code for an application, we take a more relaxed
view and normally rely on the disciplined use of functors to ensure that we
are not making unwarranted use of implementation details.

Styles of use

Books that talk about software engineering usually have a section that dis-
cusses bottom-up and top-down program development. In the bottom-up
approach you start, as the name suggests, from the bottom and work your
way towards the goal, i.e. the problem to be solved. Your initial environ-
ment might not support sets, for example, and so your first step might be to
implement a set package. Using this you can then write a package to support
graphs. At each step you are increasing your programming ‘vocabulary’ un-
til you eventually reach the stage where you can express the solution to the
original problem in a concise form. In the top-down approach you express
the solution to the original goal in terms of the solutions to some subgoals.
You then develop algorithms to solve the subgoals, each of these depending
on solutions to further subgoals. This process is repeated until you reach a
goal that is trivial enough to be solved using the basic building blocks of the
language directly.

Both of these approaches have their problems. The bottom-up approach
is not goal directed – one might waste time developing some code that may
never be used in the final program. The advantage of this strategy is that the
code can be run and tested at each step. The top-down approach is clearly
driven by the goal to be solved. Unfortunately, at each stage the solution of
a goal depends on the code for subgoals that have yet to be solved. It can be
difficult to test the program until all of the code has been written. In reality,
of course, people will use a mixture of these two approaches. The hope is

12

that they will reap the benefits of both approaches. The danger is that they
will suffer the disadvantages of both.

Structures and functors can be used to support both styles of program
design. In the bottom-up approach the basic building blocks are structures.
We start by building some simple structures, and then apply functors to
these to create more complex structures. We continue this process until we
eventually produce a structure representing the final solution. At each stage
in the development we will have a collection of structures that can be tested.
In the top-down approach the basic building blocks are functors. We start
by writing a functor to solve the main goal. This will be parameterised
on signatures representing solutions to some subgoals. We can type-check
this functor, but we cannot evaluate the code until we apply the functor to
structures matching the argument signatures. To produce these we must first
solve the subgoals using other functors. These will also depend on signatures
representing smaller subgoals. You can visualise the process as building a
tree, starting from the root. Eventually the leaves will be simple enough that
we can construct structures for them directly, rather than using functors. At
this point you can apply the functors to the structures, bottom-up, until you
produce a structure representing the final program. The functor application
phase is similar to program linking in a more conventional language. This
analogy can be carried further, as functors can be separately compiled and
loaded in some ML systems. There is nothing stopping you mixing these two
styles of development. Intermediate goals can be identified and solved in a
top-down fashion, and the resulting structures can then be used as the basis
of a bottom-up solution of the original goal.

Top-down development of functors

When developing structures, you will have discovered that error messages for
a large block of faulty code may be un-informative. A useful strategy is to
develop the code interactively at the top level, and then to package it as a
structure once it is correct. When developing a functor we cannot use this
strategy as our code depends on the formal parameters.

PolyML provides a function PolyML.ifunctor to assist in the interactive
development of functors. Here is an example of its use

> PolyML.ifunctor "C" "CompileSig";

val it = () : unit

> open C;

type Expn type Action val code = <undefined> : Expn -> Action list

>

13

The function takes two string arguments, the first will be used as the name of
a dummy structure matching the signature given by the second. Opening this
dummy structure gives a collection of dummy types and values as specified
by the signature. Using these, you can develop and type-check the functor
code interactively. Since the dummy values haven’t been implemented, you
can’t run it.

To develop a functor with parameters including structures and sharing
constraints, just declare a signature corresponding to the parameter specifi-
cation. For example, to develop the functor TOPLEVEL we could have declared
a signature ArgumentSig

signature ArgumentSig = sig

structure Machine: MachineSig

and Compile: CompileSig

and Environment: EnvironmentSig

and Expn : ExpnSig

sharing type Compile.Action = Machine.Action

and type Environment.Environment = Machine.Environment

and type Compile.Expn = Expn.Expn

end;

and then used ifunctor as follows

> PolyML.ifunctor "Args" "ArgumentSig";

val it = () : unit

> open Args;

structure Environment : EnvironmentSig

structure Expn : ExpnSig

structure Machine : MachineSig

structure Compile : CompileSig

(C) Michael Fourman 1994-2006

14

