
Functions as Data

Michael P. Fourman

February 2, 2010

In ML functions are first-class objects: they can be passed as arguments,
returned as values, and incorporated as components of compound values.
Sometimes this can be an effective way of representing data; in particular, it
allows a common interface to be provided for similar functions on differently
represented datatypes. By including these functions as part of the represen-
tation of an object, we can implement some features of an “object-oriented”
programming style in ML. We will return to this use of functions as data
later in the course. We can also use functions to represent infinite datastruc-
tures, such as the sequence of all prime numbers. Again, we will return to
this topic later in the course.

In this note, we are more interested in the use of functional representations
to provide “executable specifications” of some datatypes that we will later
implement in a more traditional fashion. We give some examples that make
use of functions as values.

Dictionaries

Our first example is an implementation of the Dictionary signature. Consider
a dictionary, like the telephone dictionary, with strings as keys, and numbers
as entries. Given a string, we can use the dictionary to lookup the correspond-
ing number. This gives us a (partial) function from strings to numbers. We
can use functions to implement dictionaries directly. .

A more common implementation of a dictionary is as an association list,
a list of associated pairs. Mathematicians call the set of such pairs the graph
of the function; this may be confusing, as in computer science we use the
term graph for a related, but more general, notion.

1

signature DictSig =

sig

type Key

type Item

type Dict

exception Lookup

val empty : Dict

val lookup : Dict -> Key -> Item

val remove : Key * Dict -> Dict

val enter : (Key * Item) * Dict -> Dict

end

Figure 1: A signature for Dictionaries

structure Dict : DictSig = struct

exception Lookup

type Key = string

type Item = int

type Dict = string -> item

val empty = fn _ => raise Lookup

fun lookup d k = d k

fun remove (k, d) =

fn k’ => if k’ = k then raise Lookup

else d k’

fun enter ((k, e), d) =

fn k’ => if k’ = k then e

else d k’

end;

Figure 2: A Dictionary implemented as a function

2

structure Dict : DictSig =

struct

exception Lookup

type Key = string

type Item = int

type Dict = (string * int) list

val empty = []

fun lookup [] k = raise Lookup

| lookup ((k’, e) :: t) k = if k’ = k then e else lookup t k

fun remove (k, []) = []

| remove (k, (k’,e) :: t) = if k = k’ then t

else (k’, e) :: remove k t

fun enter ((k, e), d) = (k,e) :: remove k d

end;

Figure 3: A Dictionary implemented as an association list

3

Sets

A set may be represented by a boolean-valued function, or predicate, of type
Item -> bool, that tells us whether a given item is a member of the set.
This gives an implementation of most of the set operations. However, we

infix 4 ==

functor FNSET(type Item val == : Item * Item -> bool) =

struct

type Item = Item

type Set = Item -> bool

val empty = fn _ => false

fun member s e = s e

fun insert(e, s) =

fn e’ => if e == e’ then true else s e’

fun delete(e, []) =

fn e’ => if e == e’ then false else s e’

fun union (s, t) = fn e => s e orelse t e

fun intersect(s, t) = fn e => s e andalso t e

end;

Figure 4: Sets implemented as predicates

cannot implement IsEmpty, since there is no way to test whether a given
function will always return the answer false. One benefit of this represen-
tation is that it allows us to represent infinite sets, such as the set of even
numbers.

(C) Michael Fourman 1994-2006

4

