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Introduction

So far, we have encountered concrete data structures, such as lists and trees.
SML makes it particularly easy to use these; they have a natural represen-
tation as ML datatypes. Trees allow us to represent a particular class of
relationships between data items (lists are a special case of trees). In this
note, we introduce graphs. A graph, or network, is a general mathematical
structure that can be used to represent many different kinds of relationship
between data items. Graph algorithms have numerous applications, both
within Computer Science, and in other application areas. There are several
different datastructures used to represent graphs; different representations
are suited to different purposes. We begin this note with a brief introduction
to graphs, and then go on to consider some of these datastructures.

Graphs

A graph G is a pair (V, E), where V is a set of vertices (sometimes called
nodes) and E is a set of edges (sometimes called arcs). Fach edge in E joins
a pair of vertices from V'; both members of the pair may be the same vertex.
Graphs are often viewed pictorially, with circles to represent vertices, and
lines connecting circles to represent edges. If the graph is undirected, each
edge joins an unordered pair,, {u, v}, of vertices. If the graph is directed, each
edge joins an ordered pair, (u,v), of vertices with u called the start vertex
of the edge and v called the end vertex of the edge. In pictures, a directed
edge is represented by an arrow pointing from the start vertex to the end,
u — wo. If there is an edge joining u to v, we say v is adjacent to u.

In addition to this basic structure, graphs may have information, such as
labels or weights, associated with their vertices and/or edges. In pictures,
this information can be written beside the arcs and vertices.



A simple example of a graph is an airline route map: here the nodes
correspond to airports, and arcs to flights between airports. Some airlines’
route maps may be represented by undirected graphs, however, most airlines
have some flights that operate in only one direction, so a directed graph is
needed to represent the route information. The nodes of our graph might be
labelled with the names of the airports, and the arcs with the distances, or
flight numbers.

A quite different example of a directed graph is given by considering a
number of interdependent tasks. We can represent the dependencies by a
graph, whose nodes are the tasks, with an arc a —— b representing the
fact that task a must be completed before task b is begun. Such graphs arise
in project planning and scheduling problems, and also in computer science,
where they may be used to represent the dependencies between a number of
interdependent computations.

Once you start to look for them, graphs arise naturally in many areas.
The unpaved roads of Australia may be represented as a weighted, undirected
graph, by taking a node for each road junction, and a weighted edge for each
road segment connecting two junctions (the cost of paving the track from a
to b is the weight of the edge (a,b)).

Paths and cycles

A path of length n from x to y in a graph is a sequence u; of n + 1 vertices,
with ug = z, and u,, = y, that are linked together by n edges ¢;; the edge
e; joins u;_1 to u;. (Note that, according to this definition, there is always a
path of length 0, linked together by no edges, from an edge to itself.) In a
directed graph we require that all edges in a path point in the same direction;
from z, towards y.

We are interested in many properties related to paths in graphs. Here
are a few examples. Is there a path joining any two edges, is the graph
connected? 1If it is not connected, how many connected components does it
have? What is the shortest path from z to y?

A cycle in a directed graph is a loop—a non-trivial path starting and
ending at the same node. A graph with no cycles is said to be acyclic.
Directed, acyclic, graphs, or DAGSs, are important in many applications.

Graph Algorithms

Once we have represented the data for an application as a graph, we still
have to code algorithms to answer the questions we want to ask. For an
airline route map we might ask for the shortest way of getting from a to z,



this is called the shortest path problem.. For a graph of interdependent tasks
we may want to find some order in which we can tackle the tasks so as to
respect the dependencies; a solution is called a topological sort of the graph.
For a graph representing computations, we may ask which computations are
needed to produce a particular result. Abstractly, we want to know which
nodes are reachable from the given one. For the graph of Australian dirt
roads, we can ask which roads we should pave so as to provide a paved link
connecting every pair of junctions, at minimum cost. A subgraph consisting
of these segments is called a minimum cost spanning tree..

All these problems may be solved by applying general graph algorithms,
which can be studied and implemented in the abstract, and find a wide
variety of different applications. We will study these and other algorithms in
the next few lectures.

Representation of graphs

We will consider two approaches to representing a graph. In the first, a
graph is viewed as a set of vertices, together with a function, adj, from
vertices to sets of vertices, giving the set of vertices adjacent to the given
vertex. The set of vertices adjacent to a given vertex can be represented by
a list; this gives the adjacency list representation of a graph. In the second
family of representations, we directly model the mathematical definition: a
graph is represented as a pair of sets; a set of vertices, and a set of edges.
Traditionally, the set of edges has been represented by a boolean matrix,
giving the adjacency matriz representation of the graph.

Some graphs are sparse, they have few edges, others are dense, they have
many edges. Typically, the complexity of a graph algorithm will depend on
both V', the number of vertices, and F, the number of edges. Different algo-
rithms and representations may be appropriate for sparse and dense graphs.
Sparse graphs are efficiently represented by adjacency lists; an adjacency ma-
trix may be more appropriate for a dense graph. The choice of representation
should also take account of the way the graph will be used; for a specific algo-
rithm, the key issues to consider are the time required to perform the graph
operations required, and the space required to store graphs.

As an example, consider a directed graph with three vertices, numbered
1, 2 and 3, with edges (1,2), (1,3) and (3,2). With the first method, this
graph could be represented by:

val g = [(1, [2, 3]),
(2, ),
(3, [21) 1;



Here, an association list has been used to represent the connection between
a vertex and the set of adjacent edges. These sets of edges are represented
as lists; the set of vertices is implicit as the set of keys to the association list.
This representation implicitly uses the type
type Graph = (int * int list) list
We can use an explicit function to represent the association between a vertex
and its adjacency list. This gives the following representation of our example
graph:
val g = ([1,2,3], fn 1 => [2,3] | 2 => [] | 3 => [2])
Which corresponds to the type
type Graph = ((Vertex list) * (Vertex -> Vertex list);
The graph could be represented as a pair of sets, as follows:
val g = ([1, 2, 3], [(1,2), (1,3), (3,2)])
Here each set is represented by a list. This uses the type
type Graph = ((Vertex list) * ((Vertex * Vertex) list));

For yet another variation, we could use a functional representation of one of
the sets
val g = ([1,2,3],
fn (1,2) => true
| (1,3) => true
| (3,2) => true
| _ => false)

type Graph = ((Vertex list) * ((Vertex * Vertex) -> bool));

The possibilities are endless. We will use the ML module system to organise
the morass. Before introducing a general signature giving a general-purpose
interface to graphs, we see how a simple interface, based on the idea of an
adjacency-list representation, allows us to describe and investigate a funda-
mental algorithm for graph search.

Graph search

We use an interface to provide access to an adjacency-list representation of a
graph, while hiding inessential details of the implementation. The essential
feature provided by the interface is that, given a graph and a vertex we can
produce a list of adjacent vertices.

The functor DFS uses this interface to produce a function reachable, that
gives a list of vertices reachable by a path from a given vertex in a graph.
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functor DFS( eqtype Vertex type Graph
val adj: Graph -> Vertex -> Vertex list
) = struct
type Vertex = Vertex type Graph = Graph
fun reachable g s =
let fun member [] _ = false
| member (h :: t) v = (h = v)
orelse member t v

fun dfs [] visited = visited
| dfs (x :: xs) visited
if member visited x then dfs xs visited

else dfs (adj g x @ xs) (x :: visited)

in

dfs [s] []
end
end

Figure 1: Depth-first search

Exercise 1 Write structures, matching the argument signature of DFS, us-
ing each of the four representations of graphs, with integer nodes, outlined in
the previous section.

The algorithm is based on the idea that the two list parameters to the
auxiliary function dfs represent sets of nodes. At any call dfs todo visited
of the auxiliary function,

e if x € todo, then adj(z) C todo Uvisited.,
e s € todoUvisited,
e every node in todo U visited is reachable from s.

These properties are valid for the initial call of dfs, and are preserved by
each recursive call.

If the function dfs terminates, we can conclude that the value, visited,
returned is indeed the set of nodes reachable from s, since on the last call
of dfs the list todo is empty. Finally, the number of vertices and edges in
a graph is finite; apart from the start node, which is placed in todo for the
initial call, a node is added to todo at most once for each edge leading to
that node, because when an edge is considered, its start vertex is added to



visited. Each non-terminating call of dfs removes a node from todo. This
can happen at most F + 1 times, where E is the number of edges in the
graph. So the function terminates.

The size of visited is bounded by V', the number of vertices in the graph,
so each call to member has cost O(V). As we have seen, there are at most
E + 1 such calls, so the cost of calls to member is O(V x E). Later, we will
describe graph representations for which adj has O(InV') .

To complete the analysis, we consider the cost of calls to adj and append.
There are at most V' calls to adj; if the cost of a call to adj is O(E) then
calls to member will dominate the total cost.

The call to append, used to add items to todo has a cost proportional to
the number of items added. The total cost of these calls is therefore O(FE).
Adding this to the equation does not alter the complexity.

Depth-first search is an efficient strategy for exploring reachable nodes.
We can picture the strategy in terms of an explorer systematically investi-
gating an estuary with many channels and islands. The vertices of the graph
are junctions between channels; the channels form the edges. The graph is
directed; the arrows point upstream. Beginning at a vertex u, the sea, the
explorer goes upeach channel in turn, to visit those vertices v for which there
is an edge (u,v). While visiting a vertex that has not been previously visited,
the explorer recursively repeats the visiting process. The name ‘depth-first’
arises from the fact that the search always attempts to explore more deeply
into the graph, all the way to the source of each tributary, before backtracking
to continue visiting other neighbours of a vertex.

The order of exploration is just like the post-fix ordering of a tree. The
root of a tree is the start vertex and the leaves are vertices from which no
further exploration is possible. Graph search is more involved because we
have to keep tack of nodes we have visited to avoid re-visiting old ground.
Without keeping track we might even get stuck forever in a cycle. As with
tree traversal, there is scope for different ordering of behaviour at vertices:
pre-order style, post-order style, and various types of in-order style.

Variations

Since the lists used by dfs represent sets, we can modify the DFS algorithm
by using different representations for these sets. A different implementation
of visited could provide a more efficient membership test, and dramatically
change the complexity of the algorithm. A different implementation of todo
could alter the order in which we recurse through the nodes of the graph. We
can express this in ML using the module system. We replace the list todo by
a stucture supporting the queue operations empty, isEmpty, enq, menq, deq;
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and visited by a structure supporting the set operations, empty, insert,
member.

The effect of our earlier implementation could be obtained by using a
stack as the “todo” queue, and our most simple, list-based, implementation
of sets as the “visited” set. As other implementations of the todo queue give
different search orders, we have changed the name of the auxiliary function to
search. Of itself, this general function doesn’t do much—we simple return
the set of reachable nodes as before. However, we can further modify the
code to find paths in a graph.

Path search

The functor PATHSEARCH produces a function that keeps track of the path by
which we arrived at a given node. The function searches for a path between
two nodes of a graph. The todo queue contains paths represented as lists of
nodes these are initial segments of attempts to find a path from start, s, to
finish, f. (Notice how this is shown in the parameter specification for the
functor.) At each application of the auxiliary function, a path is removed
from the queue. If the queue is empty then there is no path. If the last node
in this path (at the head of the list as we build the paths in that order) has
already been explored, we discard the path. Otherwise, we check to see if we
have reached out goal, (Vertex is declared as an eqtype so we can do this).
If so we return the path as result; if not we add every adjacent vertex to form
a list of new paths, one step longer, which are placed in the todo queue, we
also record the fact that we have visited this node.

Notice that the paths placed in the queue are one step longer than the
one we removed. If we implement the queue as a queue, we can argue that
we will always consider all shorter paths before any given path. We initialise
the queue with a path of length 0. When we remove a path of length n, we
may add some paths of length n + 1, but they go at the end of the queue;
all paths of length n will be removed before we consider any path of length
n+ 1. This variant of the algorithm therefore finds a shortest path from start
to finish (if there is a path at all).

(C) Michael Fourman 1994-2006



functor SEARCH(
structure G : sig type Vertex type Graph
val adj : Graph ->
Vertex —> Vertex list
end
structure S : sig type Item type Set
val empty : Set

val member : Set -> Item -> bool
val insert : Item * Set -> Set
end
structure  : sig type Item type Queue
val empty : Queue
val isEmpty : Queue -> bool
val enq : Item * Queue —-> Queue
val deq : Queue -> Item * Queue
val menq : Item list * Queue -> Queue
end

sharing type G.Vertex = S.Item = Q.Item
): sig type Graph and Vertex and VSet
val reachable : Graph -> Vertex -> VSet

end

= struct
type Graph = G.Graph
type Vertex = G.Vertex
type VSet = S.Set

fun reachable (g:Graph) (s:Vertex) : VSet =
let fun search todo visited =
if Q.isEmpty todo then visited else
let val (x,xs) = Q.deq todo
in
if S.member visited x then search xs visited
else search (Q.menq (G.adj g x,xs))
(S.insert (x,visited))
end
in
search (Q.enq(s, Q.empty)) S.empty
end
end;

Figure 2: General graph search
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functor PATHSEARCH(
structure G :
sig eqtype Vertex type Graph
val adj : Graph -> Vertex -> Vertex list

end
and S:sig type Item type Set
val empty : Set
val member : Set -> Item -> bool
val insert : Item * Set -> Set
end
and Q:sig type Item type Queue
val empty : Queue
val isEmpty : Queue -> bool
val enq : Item list * Queue -> Queue
val deq : Queue -> Item list * Queue
val menq : Item list list * Queue -> Queue
end

sharing type G.Vertex = S.Item = Q.Item
): sig type Graph and Vertex and VSet
val path : Graph -> Vertex -> Vertex -> Vertex list
end
= struct
type Graph = G.Graph
type Vertex = G.Vertex
type VSet = S.Set
exception NoPath

fun path (g:Graph) (s:Vertex) (f:Vertex) : Vertex list =
let fun search todo visited =
if Q.isEmpty todo then raise NoPath else
let val ((h::t), xs) = Q.deq todo

in
if h = f then h :: t else
if S.member visited h then search xs visited
else search
(Q.menq (map (fn y => y::h::t) (G.adj g h), xs))
(S.insert (h, visited))
end
in
search (Q.enq([s], Q.empty)) S.empty
end

end;

9

Figure 3: Searching for a path



