
Spanning Trees

Michael P. Fourman

February 2, 2010

A tree is a connected, acyclic graph (V, E). In a tree, |E| = |V | − 1 (in-
tuitively, each edge connects one ‘non-root’ vertex to its ‘parent’). The trees
we have considered earlier have been rooted trees; one vertex is distinguished
as the root, and the tree is drawn dangling from this vertex. Choosing a root
vertex provides a direction for each edge—conventionally, pointing away from
the root. Undirected trees have the properties (a) that, if a new edge is added,
the graph is no longer acyclic, and (b) that there is a path between every
pair of vertices but, if any edge is deleted, this is no longer true.

A collection of edges that provides a path from the start vertex to all other
vertices in the graph, is a spanning tree, for the graph. Given a connected,
weighted, undirected graph, we want to find a minimal spanning tree—we
seek to minimise the sum of the weights of the edges in the tree. We will
present two algorithms based on a common idea; both algorithms construct
a spanning tree by incrementally adding to a set of edges, and maintain the
invariant that this set of edges is a subset of some minimal spanning tree.

We say two vertices of the graph are linked by this set if there is a path be-
tween them consisting only of edges in the set. Each new edge joins two pre-
viously unlinked vertices; this ensures that the collection of edges is acyclic.
The algorithms are known by the names of two of their discoverers, Kruskal
and Prim.

We will argue argue that, at each step in the construction,,

• If the original set of edges is contained in some minimal spanning tree,
then so is the augmented set.

• Two vertices are linked if there is some path between them via previously
considered edges.

In both cases, we start with an empty set of edges, which is certainly con-
tained in a minimal spanning tree. When we have considered all edges, we
can conclude that we have a set of edges, linking all nodes, and contained in
some minimal spanning tree. It must be a minimal spanning tree.

1

Prim’s algorithm

Prim’s algorithm grows a tree from an arbitrary root vertex. To extend the
tree we select an edge of minimal weight from among those that join a new
node to the tree. We maintain a priority queue of edges. When we link a node
to the tree, we add to the queue all edges leading from that node. Prim’s
algorithm is a variation of of our generic graph search; a node is visited when
it is linked to the tree.

Suppose the tree A is contained in some minimal spanning tree T . We
form a new tree A′ by adding an edge (u, v) of minimal weight linking some
node u in A to a node v not in A. The edge If (u, v) belongs to T , our new
tree, A′ is contained in T . Otherwise, T must contain a path linking u, which
is in A, and v, which is not. This path must contain some edge (u′, v′) for
which u′ is in A, and v′ is not. Remove (u′, v′) from T , and add (u, v), to
form a new set of edges, T ′, which is a spanning tree containing A′. As the
weight of (u, v) is minimal, T ′ is a minimal spanning tree.

An implementation of Prim’s algorithm is given by the functor PRIM. The
auxiliary function grow is called O(|E|) times, each with a call to member;
the priority queue provided by PQ is used to process O(|E|) edges. The else

branch of the recursion is called O(|V |) times, once for each vertex, each
with two calls to insert. The complexity of the algorithm will depend on
the implementation the sets and queue.

If the graph is not connected, Prim’s algorithm returns a spanning tree
for the component of the initial vertex selected.

Kruskal’s algorithm

Kruskal’s algorithm grows a forest of trees. Edges of the graph are considered
in turn; an edge is added to the forest if it joins two previously unconnected
vertices. Edges are considered in order of decreasing weight.

The argument for Kruskal’s algorithm is just like that for Prim’s. When
we extend a forest F to form a forest F ′, we ensure that any minimal spanning
tree T extending F can be modified by minor surgery, to form a minimal
spanning tree T ′ containing F ′.

Implementing Kruskal’s algorithm efficiently requires a special data-structure,
called a partition, to keep track of which vertices are linked. This data-
structure represents the partitioning of a set into disjoint subsets. It supports
two operations: union, which forms a new partition in which two subsets
have been merged, and find, which produces a representative of the subset
containing a given element. Two elements, x, and y, are in the same subset
of the partition, p, if and only if find(p)(x) = find(p)(y). A signature is

2

given in the code for Kruskal’s algorithm. Implementations of this signature
will be discussed later in the course.

The implementation of Kruskal’s algorithm, given by the functor KRUSKAL,
also makes O(|E|) calls to its auxiliary function, grow; each call includes two
calls to find. Again, a priority queue is used to process O(|E|) edges. Since
we are building a spanning tree, the else branch is executed |V | − 1 times,
once for each edge in the tree; each time includes one call to insert and one
to union.

For graphs that are not connected Kruskal’s algorithm returns a forest of
spanning trees— one for each component of the graph.

3

functor PRIM(

structure G : sig

type Vertex type Edge type Graph

val adj : Graph -> Vertex -> Edge list

val ends: Edge -> Vertex * Vertex

end

structure VS : SetSig

structure T : SetSig

structure PQ : QueueSig

sharing type G.Vertex = VS.Item

and type PQ.Item = T.Item = G.Edge

) = struct

type Graph = G.Graph

type Vertex = G.Vertex

type Tree = T.Set

fun span (g:Graph) (s:Vertex) : Tree =

let fun grow edges tree included =

if PQ.isEmpty edges then tree else

let val (e, es) = PQ.deq edges

val (u, v) = G.ends e

in

if VS.member included v then

grow es tree included

else grow

(PQ.menq (G.adj g v, es))

(T.insert (e, tree))

(VS.insert (v, included))

end

in

grow (PQ.menq(G.adj g s, PQ.empty))

T.empty

(VS.insert(s,VS.empty))

end

end;

4

functor KRUSKAL(

structure G: sig

type Edge

type Vertex

type Graph

val ends : Edge -> Vertex * Vertex (* graph *)

val edges: Graph -> Edge list

end

structure PQ: QueueSig (* a priority queue of edges *)

structure F: SetSig (* a set of edges *)

structure P: sig

type Part

eqtype Item

val empty: Part

val union: Part -> (Item*Item) -> Part

val find : Part -> Item -> Item

end

sharing type F.Item = PQ.Item = G.Edge

and type P.Item = G.Vertex

) = struct

type Graph = G.Graph

and Forest = F.Set

fun span (g: Graph) : Forest =

let fun grow edgeQ forest p =

if PQ.isEmpty edgeQ then forest

else

let val (e,q) = PQ.deq edgeQ

val (u,v) = G.ends e

in if P.find p u = P.find p v

then grow q forest p

else grow q

(F.insert(e, forest))

(P.union p (u,v))

end

in

grow (PQ.menq (G.edges g, PQ.empty)) F.empty P.empty

end

end;

(C) Michael Fourman 1994-2006

5

