
Graphs concluded

Michael P. Fourman

February 2, 2010

Paths again

In many graph applications, a fundamental problem is to determine whether
a pair of vertices are connected via a sequence of zero or more edges, i.e.,
whether there is a path between the vertices. For example, if a logic circuit
is being modelled by a graph, with vertices representing gates and edges
representing wires, we might want to know whether a particular circuit input
is connected to a particular circuit output.

In some applications,edges have associated weights, and we are interested
in finding paths that are short (or long) in terms of the total weights of the
edges on the path. For example, if a road map is being modelled by a graph,
with vertices representing towns and weighted edges representing roads with
distances, we might want to find the shortest route between two towns.

We have seen, in Lecture Note 13, how to use graph search to find which
vertices are reachable from a given vertex, and how to find the shortest path
between two vertices when each edge has length 1. We can find shortest paths
in a weighted graph (with non-negative weights) using the same algorithm,
placing the paths in a priority queue that gives shorter paths higher priority.
This algorithm can also be adapted to find the shortest paths from a given
vertex to all other vertices; when we first visit a vertex, we record the path
that got us there. This variant is known as Dijkstra’s algorithm.

The problem of finding all shortest paths, between every pair of vertices
can be solved differently, using an algorithm due to Floyd and Warshall. We
give an outline of the algorithm in English.

For a graph G = (V, E), we consider the vertices in some order, V =
{v1, . . . , vn}, the algorithm constructs a sequence of graphs Gi for 0 ≤ i ≤ n.
All of the graphs have vertex set V. An edge joining (u, v) in graph Gi is a
shortest path in G, linking u to v, with any intermediate vertices drawn only
from {v1, . . . , vi}. The graph G0 is just G itself. An edge joining (s, t) in
Gn is a shortest path between the vertices s and t in G. The subtlety of the

1

algorithm lies in the fact that it augments the paths by allowing only one
new vertex to be involved at each stage.

Finding longest paths

Finding longest weight paths is important for critical path analysis in schedul-
ing problems. However, the graphs must be acyclic, otherwise paths can have
arbitrarily large weights. We can find longest paths just by negating all of the
edge weights, and then using a shortest path algorithm. Unfortunately, Dijk-
stra’s algorithm does not work if edges are allowed to have negative weights.
However, the Floyd-Warshall algorithm does work, as long as there are no
negative weight cycles, and so it can be used to find longest weight paths in
acyclic graphs.

Topological sorting of a graph

In some applications involving the use of directed acyclic graphs, a require-
ment is to list the vertices of the graph in a linear ordering so that all vertices
reachable from a given vertex come later than it in the list. An example is
scheduling, where vertices represent activities and directed edges represent
the fact that one activity must be performed before another: here the list
would give an acceptable order in which to perform the activities. Construct-
ing such a list is known as topological sorting of a directed graph. Note that
it is not possible to topologically sort a directed graph that has cycles.

We can topologically sort a DAG using a variant of depth-first search.
To sort all the vertices reachable from x, we must first sort all the vertices
reachable from nodes adjacent to x, and then place x before this list. There
are two complications: first, vertices may be reached by more than one path,
the list sorted (which is itself topologically sorted) acts as a visited list;
second, the graph may have cycles, the list path records the path by which
the algorithm arrived at the current node, and is used to check for cycles.

On any call, sort todo path sorted, the list sorted is a topologically
sorted list of vertices, closed under reachability; and if c is a member of todo
then x::path is a (reversed) path in the graph. If the graph is acyclic, the
call returns a topological sort of all vertices reachable from the todo list, or
in the sorted list.

2

functor TOPSORT(structure G: GraphSig)=

struct

type Graph = G.Graph

type Vertex = G.Vertex

exception Cycle

local

fun member [] _ = false

| member (h :: t) x = x = h orelse member t x

in

fun topSort g =

let fun sort [] path sorted = sorted

| sort (x :: xs) path sorted =

if member path x

then raise Cycle

else if member sorted x

then sort xs path sorted

else let val afterx = sort

(G.adj g x)

(x :: path)

sorted

in

sort xs path (x :: afterx)

end

in

sort (G.vertices g) [] []

end

end

end ;

(C) Michael Fourman 1994-2006

3

