
Mutable Data

Michael P. Fourman

February 2, 2010

References

Continuing our descent into anarchy, we introduce ML references, these are
mutable, or updateable variables. If we allowed any value to be changed, at
any point in the program, then the language would be like C, but with ML-
style syntax. Furthermore, as we will see shortly, we would have to curtail
the use of polymorphism. We really would have a mess on our hands.

The trick is to introduce a new kind of value, distinct from any of the
values we have seen so far. Whereas the variables we have introduced so far
refer to abstract mathematical values, a reference variable refers to a storage
location in memory. (In this they are like arrays—an array may be thought
of as referring to a structured block of storage which we can inspect using
sub, and update, using update.)

Evaluating the expression ref e initialises a new updateable cell in mem-
ory with the result of evaluating e, and returns a value that we can use to
refer to this memory location. We can bind this value to a name just like
any other value:

> val r = ref (1 + (2 * 3));

val r = ref 7 : int ref

The type of the result is an int ref. An updateable cell is called a reference
in SML; an int ref is a reference that can hold an integer. We can change
the value in a reference cell using an assignment expression such as r :=

9+2. The type of := is ’a ref * ’a -> unit and so the result of such an
expression is just (). To retrieve the value within a reference we have to
dereference it using the function !, as in the expression !r + 8. Note that a
reference to an integer is not the same as an integer; evaluating r + 8 would
give you a type-checking error. You can have references of any type. You can
even have polymorphic references, but with some restrictions. For example,
suppose we typed val rl = ref [] at the top-level. If this were allowed

1

you could get into all sorts of problems. We could alter rl by evaluating rl

:= [3]. The type of rl will change from ’a list ref to int list ref.
A function that refers to rl may type-check before the change but may fail
to type-check after the assignment. Here is an example of code that is not
legal in ML:

val lp = ref []

fun test () = case !lp of [] => true

| (h :: t) => h = 0 ;

lp := [0.0, 3.2, 4.0];

test();

The type ML system rejects this code. If the code could be executed, the
evaluation of test() would result in a comparison of a real and an integer.
The same idea could be used to compare any two values. This is a type
error, and would clearly be undesirable. The type of a reference cannot be
allowed to change after its creation. Essentially this means that we can’t
create polymorphic references at the top-level.

Using references

References may be used in many ways. The most obvious is to mimic an
imperative programming style. Here is an imperative implementation of the
factorial function in ML.

fun fact n =

let val count = ref n

and prod = ref 1

in

while !count > 0 do(

prod := !prod * !count;

count := !count - 1

);

!prod

end

This is similar to the corresponding C implementation

int fact(int n)

{

int prod = 1;

while(n > 0){

prod = prod * n;

n = n - 1;

2

}

return prod;

}

In ML, the one-line recursive definition is not only clearer, but also marginally
faster.

Hidden state

Another use for references is to provide a mechanism for representing an up-
dateable state when we want one. For example, a random number generator
may be modelled as a “function” that returns a (pseudo-)random number.
Unlike a true mathematical function, it should not always return the same
value.

functor MKRANDOM() =

struct

(* Given a seed, mkRandom returns a psuedo-random number generator

which takes an integer argument of one more than the maximum

return value required. (Linear Congruential, after Sedgewick,

"Algorithms", Addison-Wesley, 1983, Chapter 3 pp 37-38.) *)

fun mkRandom seed =

let val r = ref seed

val a = 31415821

val m = 100000011

fun f n =

let val rand = (r := ((a * !r + 1) mod m);

(!r * n) div m)

in if n < 0 then rand + 1 else rand

end

in f

end;

end;

Linked datastructures

References are used to build datastructures with loops. Consider the code

3

val ff = ref(fn 0 => 0);

val ffact = fn 0 => 1

| n => n * !ff (n-1);

ff := ffact;

Here, the recursive factorial function is implemented without explicit re-
cursion. We use a reference as a place-holder for a function to be used in the
recursive call, and then update this to make the code self-referential.

References may also be used to implement lists, trees and graphs. Some-
times operations on a mutable version of a data-structure may be imple-
mented somewhat more efficiently than the corresponding functional struc-
ture. A mutable list can be implemented “by hand” as a linked list con-
structed with explicit references.

datatype ’a Node = Nil

| Cons of ’a * (’a Node ref)

type ’a List = ’a Node ref

fun insert (x:int) (xs : int List) =

case !xs of

Nil => xs := Cons (x, ref Nil)

| Cons(h,t) =>

if x < h then (xs := Cons (x, ref (!xs)))

else insert x t;

fun append (a: ’a List) (b: ’a List) =

case !a of

Nil => a := !b

| Cons(h, t) => append t b;

Here is a series of interactions manipulating mutable lists.

> val a = ref Nil : int List;

val a = ref Nil : int List

> (insert 1 a; insert 3 a;insert 2 a);

val it = () : unit

> a;

val it = ref (Cons (1, ref (Cons (2, ref (Cons (3, ref Nil)))))) : int List

> val b = ref Nil : int List;

val b = ref Nil : int List

> (insert 10 b;insert 15 b;insert 17 b);

4

val it = () : unit

> append a b;

val it = () : unit

> a;

val it = ref

(Cons(1,ref(Cons(2,ref(Cons(3,ref(

Cons(10,ref(Cons(15,ref(

Cons(17, ref Nil)))))))))))) : intList

Such implementations must be used with care. For example, append a a;

produces a circular list, with no end. Many more arcane datastructures with
more links have been developed. For example, doubly linked lists may be
used to implement queues.

Hidden changes of representation

Some of the best uses of references are where they are hidden inside datatypes
that look completely functional to the external user. For example, consider
our ‘two list’ representation of a queue again. When we studied this example
we noted that the second queue might be reversed many times. For example,
if we had the variable q bound to the queue Queue([], l) then evaluating
front q would result in the list l being reversed. However, this would occur
every time we evaluated this expression, not just the first time. It would
be better if we could destructively change the values of the two lists in this
case to avoid such wasted effort. Here is an alternative version of the queue
functor, that is based on references:

5

functor RQUEUE(type Item):QueueSig =

struct

exception Deq

type Item = Item

abstype Queue =

Q of (Item list * Item list) ref

with

val empty = Q (ref ([], []))

fun isEmpty(Q (ref([], []))) = true

| isEmpty _ = false

fun enq(Q(ref (inp, out)), e) =

Q(ref(e :: inp, out))

fun deq(Q(ref(inp, h :: t))) =

(Q(ref(inp, t)), h)

| deq(Q(ref([], []))) = raise Deq

| deq(Q(r as ref(inp, []))) =

(r := ([], rev inp); deq(Q r))

end

end;

Note how we can use ref as a constructor to avoid having to use ! to
peek inside a reference. Queue structures produced via this functor can be
used in any context where a purely functional queue was required. The only
difference would be in the execution speed. This example is slightly artificial,
since queues are usually used in a “single-threaded” pattern of calls; we don’t
usually call deq more than once on the same queue.

A better example is given by using an array to automatically memoize
values of a function. We combine two ideas: the tabulation of a function to
avoid re-computation, and the use of update to implement recursion.

6

fun f memo 0 = 0

| f memo 1 = 1

| f memo n = memo (n-1) + memo (n-2);

infix 0 sub;

fun memoize n f =

let datatype R = K of int | U

val a = Array.array (n, U)

fun g x =

(case a sub x of K n => n

| U =>

let val n = f g x in

update(a,x,K n);

n

end

)handle Subscript => f g x

in

f g

end;

Memoizing the first 30 values of fib makes the computation of fib 50

feasible.

> val fib = memoize 30 f;

val fib = fn : int -> int

> fib 50;

val it = 12586269025 : int

For this example, the pattern of recursion is easy to understand, so we can
write an efficient tail recursive function that keeps track of the previous
computations it needs. For other functions with more complex patterns of
recursion, memoization can be a useful tool. (C) Michael Fourman 1994-2006

7

