
Binary Search Trees

Michael P. Fourman

February 2, 2010

Introduction

Many algorithms make use of datastructures that represent dynamic sets,
that is, a collection of elements that can grow, shrink, or otherwise change,
over time. Stacks, queues, priority queues, and dictionaries may all be viewed
as dynamic sets. If algorithms are to make use of dynamic sets without ef-
ficiency worries, it is important that the appropriate data structures are
carefully chosen. The choice of implementation may be affected by the par-
ticular types of element involved, and by the relative frequencies of different
operations being performed on the dynamic set. In this note we introduce
search trees, which support a variety of operations on dynamic sets.

Search Trees

A heap is a vertically-ordered tree; a search tree is horizontally ordered. A
binary search tree is a binary tree whose nodes are labelled by items in such a
way that in-order traversal of the tree gives an ordered list of items. Searching
for an item in a search tree is an O(h) operation, where h is the height of the
tree. Balanced trees are important because the height of a balanced tree is
O(lgn), where n is the number of nodes in the tree. In this section we look at
functions to insert and retrieve elements from a binary search tree without
worrying about keeping the tree balanced. Techniques for balancing will be
covered later.

Recall the type declaration for a binary tree. We declare it in a signature
for later use.

signature BTreeSig =

sig datatype ’a Tree = Lf

| Nd of ’a Tree * ’a * ’a Tree

end

1

We will implement sets of items as search trees of type Item tree, where
the type Item is equipped with an ordering, <. A binary tree is a search tree
if, and only if, for each internal node Nd(lt, v, rt), every label in the left
subtree, lt is less than v, and every label in the right subtree, rt, is greater
than v.

The basic idea is to build into our data-structure the divide-and-conquer
strategy used in algorithms like quicksort and mergesort. In the quicksort
algorithm, we use a pivot to divide the sorting problem into two independent
parts. In a binary search tree, each internal node divides the data-structure
into two independent parts. We place smaller items in the left sub-tree, and
larger items in the right sub-tree. An in-order traversal of a binary search
tree gives an ordered list.

Here is a function, based on our first implementation of quicksort, that
builds a binary search tree from a list.

local

fun divide x (h :: t) =

let val (low, high) = divide x t

in if x < h then (low, h :: high)

else (h :: low, high)

end

| divide _ [] = ([],[])

in

fun mkTree (h :: t) =

let val (x, y) = divide h t

in Nd(mkTree x, h, mkTree y)

| mkTree [] = Lf

end

We can picture the action of quicksort by building this tree, and then produc-
ing an in-order traversal—except that in quicksort we don’t actually bother
to build the tree. It may pay to build the tree, in order to implement op-
erations, such as member, that involve searching. The function to look for a
given element may be written as

fun member Lf k = false

| member (Nd(lt, k’, rt) k =

if k < k’ then member lt k

else

if k’ < k then member rt k

else true (* k = k’ *) ;

The cost of a call to member is bounded by the height of the tree; if the tree is
balanced, this is O(lgn). The work invested in building the tree is O(nlgn).

2

If we only expect to make O(lgn) calls to member, we might as well use a list
(with an O(n) implementation of member) to represent our set. Otherwise,
the investment is probably worthwhile.

Insertion To insert a new element, we replace a leaf by a tree with a node
containing the new element, and two leaves. We recurse down the tree to
find the appropriate position for the new leaf.

fun insert (e, Lf) = Nd(Lf, e, Lf)

| insert (e, Nd(lt, r, rt)) =

if e < r then Nd(insert(e, lt), r, rt)

else if r < e then Nd(lt, r, insert(e, rt))

else Nd(lt, r, rt) (* e = r *)

Note that the function returns a new tree, leaving the original unchanged.
When we try to insert an element, we may find it already in the tree, in which
case the tree we return is equal to the original tree. However, the recursion
still rebuilds the tree. We can use exceptions to optimise this case by really
returning the original tree.

local

exception NoChange

fun ins (e, Lf) = Nd(Lf, e, Lf)

| ins (e, Nd(lt, r, rt)) =

if e < r then Nd(ins(e, lt), r, rt)

else if r < e then Nd(lt, r, ins(e, rt))

else raise NoChange

in

fun insert(e, t) = ins(e, t) handle NoChange => t

end

Maximum We can use a binary search tree to implement a priority queue.
The largest label in the tree must be found at the end of the right-most
branch.

fun getmax (Nd(lt, v, Lf)) = (lt, v)

| getmax (Nd(lt, v, rt)) =

let val (r, m) = getmax rt

in (Nd(lt, v, r), m) end

This could be used as an implementation of deq, but this isn’t a very good
way to implement a priority queue. A search tree used as a priority queue
will tend to become unbalanced. The main reason for introducing the deq

operation is that we will use it in our implementation of the set operation,
delete.

3

Deletion The delete operation is more interesting. The entry to be deleted
may occur anywhere in the tree, we must be able to re-constitute a binary
search tree from the remainder. Fortunately, it suffices to consider only one
case. If we can write a function join to re-constitute a binary search tree
from the two orphan children that remain when we remove the root node of
a tree, we can implement delete as follows:

fun delete(e, Lf) = Lf

| delete(e, Nd(lt, v, rt)) =

if e < v then Nd(delete(e, lt), v, rt)

else if v < e then Nd(lt, v, delete(e, rt))

else join lt rt

If either of the children is a leaf, joining is trivial; otherwise we have to ensure
that we maintain the correct ordering of nodes within the joined tree. The
two children are quite special: all the values in lt come before all the values
in rt. Before we can join them, we must remove one value to place at the
root of the new tree. We can then place the remainder of the two subtrees
to the left and right of this element. The partitioning element may either
be the largest value in the left child, or the smallest value in the right child.
In our implementation of join, we use deq to remove the largest member of
the left child.

fun join Lf x = x

| join x Lf = x

| join lt rt =

let val (l, m) = rmmax lt

in Nd(l, m, rt) end

An implementation of several set operations is provided by the functor
TREESET given in Figure 1.

A binary search tree can also be used to support dictionary operations,
as shown in Figure 2. We implement a dictionary as a search tree of
Key * Item pairs. TREESET provides most of the operations, but we need
to access the representation directly to implement lookup. (C) Michael
Fourman 1994-2006

4

functor TREESET(structure T : BTreeSig

type Item

val < : Item * Item -> bool) =

struct

local

open T

exception NoChange

fun ins (e, Lf) = Nd(Lf, e, Lf)

| ins (e, Nd(lt, v, rt)) =

if e < v then Nd(ins(e, lt), v, rt)

else if v < e then Nd(lt, v, ins(e, rt))

else raise NoChange

fun getmax (Nd(lt, v, Lf)) = (lt, v)

| getmax (Nd(lt, v, rt)) =

let val (rt’, m) = getmax rt

in (Nd(lt, v, rt’), m) end

| getmax Lf = raise NoChange

fun join Lf x = x

| join x Lf = x

| join lt rt =

let val (l, m) = getmax lt

in Nd(l, m, rt) end

fun del(e, Lf) = raise NoChange

| del(e, Nd(lt, v, rt)) =

if e < v then Nd(del(e, lt), v, rt)

else if v < e then Nd(lt, v, del(e, rt))

else join lt rt

in

type Item = Item and Set = Item Tree

val empty = Lf

fun isEmpty Lf = true | isEmpty _ = false

fun member Lf k = false

| member (Nd(t1, k’, t2)) k =

if k < k’ then member t1 k

else

if k’ < k then member t2 k

else true;

fun insert(e, t) = ins(e, t) handle NoChange => t

fun delete(e, t) = del(e, t) handle NoChange => t

end

end

Figure 1: Sets based on a Search Tree

5

functor TREEDICT(structure T : BTreeSig

type Key

val < : Key * Key -> bool

type Item) : DictSig =

let structure TS =

TREESET(structure T = T

type Item = Key * Item

val op < = fn ((k, _), (k’, _)) => k < k’)

in

struct

open T

exception Lookup

type Dict = (Key * Item) Tree

type Key = Key

type Item = Item

val empty = TS.empty

val enter = TS.insert

fun lookup Lf k = raise Lookup

| lookup (Nd(lt, (k’,e), rt)) k =

if k < k’ then lookup lt k

else

if k’ < k then lookup rt k

else e ;

fun remove(k, d) = let val e = lookup d k in

TS.delete((k,e), d)

end handle Lookup => d

end

end

Figure 2: Dictionary based on a Search Tree

6

