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1 Structural Induction

In previous lecture notes we have seen how to carry out inductive proofs
on lists and trees. To re-cap, here are the datatype definitions, and the
associated inductive proof rules:

datatype ’a list = nil
| :: of ’a x ’a list

P(nil) A
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datatype ’a tree = Leaf
| Node of ’a tree * ’a * ’a tree;

¢(Leaf) A
( Y, ti,ty - (B(t) A ¢(t2)) — ¢(Node(ts, v, t2)) ) = Vo)

You should be able to start noticing a pattern here. In both datatypes we can
build larger instances of the structure by applying a constructor to smaller
instances (using : : and Node). There are also constructors that act as a base
case (nil and Leaf). The format of the associated induction rules mirrors
the way these structures are built. Let’s examine the datatype bexp, which
represents simple Boolean expressions.
datatype Bexp = V of string

| /\ of Bexp * Bexp

| \/ of Bexp * Bexp

| © of Bexp;
This datatype has more constructors than trees or lists, but the basic idea is
the same. We have some constructors for building expressions out of existing



types (in this case V) and some constructors for building expressions out of
smaller expressions (in this case /\, \/ and ~). The format of the associated
inductive rule shouldn’t be too surprising:
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You should be able to follow the pattern to produce induction rules for many
datatypes of this form. Try to do this for some of the variations of the
tree datatype illustrated in earlier notes. This kind of induction is known
as structural induction. Most finite datatypes admit this kind of inductive
proof technique, although in some cases the form of the inductive rule can
be a bit messy. For example, consider a tree datatype where we allow an
arbitrary number of children at each node:

N
| = Ve olo)

datatype ’a tree = Node of ’a * (’a tree list);
Can you write down the structural induction rule for this type?

The technique does not work on datatypes built from functional values.
For example, consider

datatype funny = F of funny -> funny;

We cannot get a structural induction rule for this datatype, and so we cannot
use induction to prove that a property ¢ holds for all objects of type funny.
Dealing with datatypes such as this is outside the scope of the course. How-
ever, most datatypes do not make use of such functional values, and so this
limitation is not particularly serious.

2 Well-founded induction
A binary relation < is well-founded if there exist no infinite decreasing chains
R e

The ordering < on the natural numbers is well-founded, but < on the integers
isn’t, and neither is < on the rational numbers. The following infinite chains
provide the evidence:

K<< =2< -1 and Ll <<=

Note that we can’t just say that < is well-founded — we have to state the
domain of the relation. Another example of a well-founded relation is the



lexicographic ordering of pairs of natural numbers, defined by
(7',5") <jex (4,7) if and only if &' <i vV ((i' =14) A j" < j)

We can extend this ordering to tuples, quadruples and so forth. If f is a
function into the natural numbers, then there is a well-founded relation <y
defined by

x <yy if and only if f(z) < f(y)
A function f used for this purpose is known as a measure function.

Why all this interest in well-founded relations? Suppose < is a well-
founded relation over some type a, and ¢(x) a property to be proved for all
x of type a. The technique of well-founded induction can be used to prove
this. The induction rule may be written as

Yy-
< (Vo - x%y—>¢($€))—>¢(y>>—>vx' ¢(z)
In other words it suffices to prove, for all y, the following induction step:

if ¢(x) for all x < y then ¢(y)

All of the induction rules we have seen up to this point can be obtained from
this rule by suitable choice of the well-founded relation. If < is

e < on the natural numbers we get complete induction.

e <y, where m <y n just if m + 1 = n then we get (after some simplifi-
cation) mathematical induction.

e <, where | <y ' just if h :: [ = [’ for some h, then we get structural
induction on lists.

A well-founded relation given by a measure function yields induction on the
size of an object.

3 Well-founded recursion

Let < be a well-founded relation over some type . If f is a function with
formal parameter z that makes recursive calls f(y) only if y < x, then f(x)
terminates for all x. In this case, we say that f is defined by well-founded
recursion on <. Informally, f(x) terminates because, since there are no
infinite decreasing chains in <, there can be no infinite recursion.

Proving that a function terminates suggests a useful form of induction for
it. If a function is defined by well-founded recursion on <, then its properties
can often be proved by well-founded induction on <.



4 Reasoning about Functionals

We have seen how functionals can be used to write very concise programs.
We would like to be able to prove some properties of such functionals. For
example, if we have two functions, f and g, and we map g over a list 1 and
then map f over the result, then we would expect to get the same result if
we map f o gover 1, i.e. we would like to prove that
(map f) o (map g) = map (f o g)

Before we attempt to prove such an equivalence we need to clarify what we
mean by equality here. The law of extensionality states that functions f and
g are equal if f(x) = g(z) for all = (of suitable type). The extensionality law
is valid in ML because the only operation that can be performed on an ML
function is application to an argument. If two functions are extensionally
equal, then replacing one by the other doesn’t affect the final result (we
are assuming for simplicity that all functions terminate). Some languages
(notably LISP) regard two functions as being equal only if their definitions are
identical. LISP uses this intensional equality because it views a function value
as a piece of code that can be taken apart. If we stick to extensional equality
we can prove that (map f) o (map g) is indeed equal tomap (f o g). We
just have to apply both sides of the equality to an arbitrary list [ and then
simplify. Now (map f) o (map g) 1 = map f (map g 1) and so we must
prove that for all 1,

map f (map g 1) =map (f o g) 1

Structural induction on 1 can be used to prove this.

Such equivalences are important to a compiler writer. We might express
our algorithm in terms of two separate maps for clarity. This is often the case
when the functions (map f) and (map g) perform interesting tasks in their
own right. However, it is clearly inefficient to first map g over a list and then
to map f over the result. It is better to map £ o g over the list in one go.
Proving such equivalences allows a compiler writer to transform programs to
more efficient ones whilst guaranteeing that the observable behaviour of the
program remains unchanged.
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