Design

Michael P. Fourman

February 2, 2010

Introduction

The design of algorithms tends to be a rather problem-specific activity. In
order to find efficient algorithms, it is important to look beyond ‘obvious’
solutions to problems, and also to notice when two problems are sufficiently
similar that a solution for one can be used as the basis of a solution for
the other. In this lecture, we survey some general approaches to algorithm
design: first, ways of adding ‘higher level’ organisation to algorithms using
techniques that are applicable when solving many different kinds of problems;
and second, ways of systematically introducing ‘detail level” organisation to
algorithms. Finally, we examine a method that allows us to place a lower
bound on the time required to solve a problem using any algorithm of a
certain style.

Higher-level organisation of algorithms

Top-down algorithms for many problems can be derived by using the general
strategy of divide-and-conquer. This type of algorithm works by partitioning
a problem into smaller parts, solving the parts recursively, and then com-
bining the solutions for the parts into a solution for the whole. While such
algorithms are nearly always elegant and easy to analyse, they are sometimes
found to be inefficient because of the fact that the sub-problems are solved
independently, and hence may perform the same computation many times
unnecessarily. Examples of divide-and-conquer algorithms seen so far include
merge and quick sorting.

Bottom-up algorithms for many problems can be derived by using the
general strategy of dynamic programming. This type of algorithm works by
solving a collection of smaller sub-problems, and saving the results for later
use in solving larger problems; eventually, this process leads to a solution



for the actual problem. Since sub-problems are not solved independently,
this method ensures that the same computation is not repeated needlessly.
Indeed, dynamic programming is usually only of use if there are many sub-
problems that crop up repeatedly when solving a problem. Examples of
dynamic programming algorithms seen so far include Floyd’s and Dijkstra’s
shortest path algorithms.

Algorithms to find optimal solutions to problems typically go through a
sequence of steps, with a set of choices at each step. A greedy algorithm al-
ways makes the choice that looks best at that moment. This simple approach
is taken in the hope that a locally optimal choice will lead to a globally opti-
mal solution. Such simplicity does not always work but, for many practical
problems, the greedy approach is effective. Examples of greedy algorithms
seen so far include Kruskal and Prim’s minimum spanning tree algorithms.
Dijkstra’s shortest path algorithm has a dynamic programming structure
overall, and uses a greedy strategy to choose the sequence of sub-problems
solved.

The ubiquitousness of graphs means that standard techniques for explor-
ing graphs can be used as general strategies for algorithms. A fundamental
graph-related technique is that of searching for a vertex with an ‘interest-
ing property’. In the special case of arrays, which are really just directed
lists, it is possible to do an instantaneous search if the interesting property
is of the form “n-th vertex in the list”. Normally, however, it is necessary
to traverse the graph, for example, using depth-first or breadth-first search;
the choice of traversal strategy depends on the representational role of the
graph in the problem to be solved. Performing topological sorting of directed
acyclic graphs is often useful because properties of the form “n-th vertex in
the graph” can then be defined.

Lower-level organisation of algorithms

A simple style of algorithm design is the straight line program: this contains
no conditional actions or loops, and so just consists of a sequence of expression
evaluations in order to obtain a result. A richer style of algorithm design is
structured programming, which means that, in addition to functions, only
three main constructs are used to build algorithms:

e Sequence — to allow consecutive processing steps;
e Condition — to allow selective processing; and

e Repetition — to allow looping.



@, ”

For example, in C terms, these correspond to the “;” separator, if/switch
statements and while/do/for statements respectively; the crucial feature is
that arbitrary jumps (gotos) are forbidden. In (purist) SML terms, sequence
and repetition are not explicit but, roughly, the three constructs correspond
to applying a function to the result of another function, if/case expressions
and repetitive recursion respectively. (In fact, SML also has “;” and while,
but that is another story.) The intention is that algorithm design is limited to
a small number of predictable constructions, because evidence suggests that
program complexity is thereby reduced, and so readability, testability and
maintainability are enhanced. One common problem with dogmatic applica-
tion of structured programming is that enabling premature exits from condi-
tion or repetition constructs often necessitates contortion: strictly speaking,
constructs like C’s break and continue should not be used. ML’s exception
mechanism provides a more structured solution to this problem.

Analysis of algorithms can be easier when structured programming is
used. Analyses of run time can be made for each function; when recursion is
used, recurrence relations can often be used to find the run time. It is possible
to roughly estimate the run time of a sequence construct by summing the
run times of its components, the run time of a condition construct by taking
the maximum run time of its action components, and the run time of a
repetition construct by multiplying the run time of its action component
by the number of loops (or by some upper bound if the exact number is
not known). This scheme is rather crude, particularly in the case of the
selection construct, but if borne in mind when developing algorithms, helps
to avoid obvious inefficiencies. Careful use of big-O notation throughout
reduces complication.

An alternative style of algorithm design, appropriate in some circum-
stances, is a decision tree approach. In marked contrast to straight line
program algorithms, all of the operations in decision tree algorithms are
conditional decision-making actions; there is no transformation of data. A
typical application of decision tree algorithms is in searching for an inter-
esting item in a collection of data. As a general mechanism for organising
such algorithms, it is sometimes possible to employ decision tables to derive
a table-driven algorithm. The idea is that a list is made of all decisions that
can be made during execution. Then, for each combination of decisions that
can occur (assuming there are not too many), a rule is given to specify the
action that the algorithm should take.



Lower bounds on algorithm run time

When an algorithm involves conditional actions (e.g., it might be a decision
tree algorithm, or it might be a structured programming algorithm with
condition constructs), it is possible to make assertions about the minimum
run time that it will require.

Suppose that, for an input of size n, the algorithm can take f(n) different
sequences of conditional actions, depending on the actual input supplied.
For example, a comparison-based dictionary searching algorithm applied to
a dictionary of size n will have at least n different conditional sequences, each
one leading to a different dictionary element.

If the conditional actions are all if-style, i.e., with Boolean results, we
could represent different conditional sequences by an ordered bit string, one
bit representing the result of each condition. If there are f(n) different se-
quences, then we know that at least lg f(n) bits are needed to represent each
one — otherwise two sequences would have the same representation. Thus,
at least one execution path of the algorithm must involve lg f(n) conditional
actions — otherwise it would be possible to code up all of the different con-
ditional sequences using less than lg f(n) bits. Given this, we have obtained
an information-theoretic lower bound on the time requirement of any algo-
rithm using an approach based on conditional actions: at least lg f(n) time
is required. This argument also works if the conditional actions have more
than two choices at any stage. In the case of a comparison-based dictionary
search, as above, this means that at least lgn time is required, and so the
O(lgn) 2-3 tree and AVL tree searching algorithms in CS2/GB/L4 have the
best possible (big-O) run time.

As another example, when we sort a collection of n randomly-ordered
values, there are n! different ways in which the collection might need to be
sorted. Thus, a comparison-based algorithm will have at least n! different
conditional sequences. The information theoretic lower bound on run time
is therefore

n 1
lgn! > lg(n> = nlgn—nlge > (Q)nlgn forn > 8
e

(the first inequality uses Stirling’s approximation to n! and the constant
e ~ 2.718 is the base of natural logarithms). This lower bound on time
complexity grows at the same rate as nlgn, and so we see that our familiar
O(nlgn) comparison sorting algorithms, such as merge and quick sorting,
cannot be bettered by any other comparison-based sorting methods.

(C) Michael Fourman 1994-2006



