
Sample Exam; Solutions

Michael P. Fourman

February 2, 2010

1 Introduction

This document contains solutions to the sample questions given in Lecture
Note 10

Short Question 5 marks
Give the responses of the ML system to the following sequence of dec-
larations

val a = 1;

val b = 2;

fun f a = a + b;

val b = 3;

f b;

the responses of the system are as follows:

val a = 1 : int

val b = 2 : int

val f = fn : int -> int

val b = 3 : int

val it = 5 : int

The point here is to check that you understand, and can apply, the
scoping rules, applied to the bindings of a and b. The exam on Thurs-
day may include let and local declarations, in a similar question.

1

1. Long Question 10 marks
The following datatype can be used to represent trees whose nodes can
have an arbitrary number of children.

datatype ’a Tree = Tree of ’a * ’a Tree list

(a) What tree does the following expression denote (i.e draw a pic-
ture):

Tree(1, [Tree(2, []), Tree(3, [Tree(4,[])])])

(b) Define a function to calculate the number of leaves in such a tree.

fun sum [] = 0

| sum (h :: t) = h + sum t

fun leaves (Tree(_,[])) = 1

| leaves (Tree(_,ts)) = sum (map leaves ts)

(c) We can assign a level to each node in a tree as follows. The node
at the root is at level 1. Its children are at level 2. Their children
are at level 3 and so on.

Suppose we are interested in trees where an internal node at level n
always has exactly n children. Define a function check : ’a Tree ->bool

that checks whether a given tree has this property.

The recursion is not straightforward: to check the property for a
tree, we must check a slightly different property for its subtrees.
We therefor introduce an auxiliary function, checkk, with an extra
parameter; checkk k checks that the appropriate property holds
for a subtree rooted at level k:

fun length [] = 0

| length (_::t) = 1 + length t

fun andl [] = true (* and over a list of booleans *)

| andl (h :: t) = h andalso andl t

fun checkk k (Tree(_,[])) = true (* nothing to check for a leaf *)

| checkk k (Tree(_,ts)) = ((length ts) = k)

2

(* check there are k children *)

andalso

andl (map (checkk (k+1)) ts)

(* subtrees are at level (k+1) *)

fun check t = checkk 1 t

3

2. Long Question 10 marks
The EQueue signature is like the signature Queue, but is extended with
an additional operation multiple enqueue, menq:(Item list * Queue) -> Queue,
intended to add a number of items (in an arbitrary order) to the queue
in a single operation.

signature EQueue =

sig

type Item

type Queue

val empty : Queue

val enq : (Item * Queue) -> Queue

val deq : Queue -> (Item * Queue)

val menq: (Item list * Queue) -> Queue

end

An implementation of a stack, including this operation, uses the type
declaration

type Queue = Item list list

the operations empty and menq are implemented as follows:

val empty = []

fun menq(items, q) = items :: q

(a) Complete the following declarations of the functions enq and deq

for this implementation

fun enq(item, []) = [[item]]

| enq(item, (h :: t)) = (item :: h) :: t

(* or, alternatively, [item] :: h :: t *)

fun deq((h :: t) :: r) = (h, t :: r)

| deq([] :: r) = deq r

| deq [] = raise Deq

The point here is to take care with the types. Since a stack is being
represented as a list of lists, we need to make a list, [[item]],
whose only member is the singleton list, [item], to represent a
stack with one entry. When adding an item to a non-empty stack,
we have a choice: we can either add the item to the list at the

4

head of the list of lists, or we can form a new singleton list and
add this to the list of lists.

(b) What is the complexity of the three operations

i. enq, O(1)

ii. deq, O(1)

iii. menq O(1)

for this implementation?

Notice that, for a conventional stack implementation we would
have to implement menq using multiple calls of enq. The com-
plexity would be O(n), where n is the number of items being
added in one go.

3. Long Question 10 marks
An implementation of sets of integers is designed to represent a set
by a list without repetitions, kept in increasing order. Here is the
function union : Set*Set -> Set from this implementation

fun union(a, []) = a

| union([], b) = b

| union(ah :: at, bh :: bt) =

if ah < bh then ah :: union(at, bh :: bt)

else if ah = bh then ah :: union(at, bt)

else bh :: union(ah :: at, bt)

(a) What is the complexity of this implementation of union?

O(n), where n is the sum of the sizes of the sets; there is at most
one recursive call for each of these elements.

(b) Give an implementation of the operation insert : (int*Set) ->Set

compatible with this representation.

fun insert (x,[]) = [x]

| insert (x,h :: t) = if x < h then x :: h :: t

else if h < x then h :: insert(x,t)

else (* x = h *) h :: t

This is book-work: a similar definition was given in the notes to
implement a priority queue.

(c) Give an O(n) implementation of the operation intersect : Set*Set -> Set,
compatible with this representation.

5

fun intersect(a, []) = []

| intersect([], b) = []

| intersect(ah :: at, bh :: bt) =

if ah < bh then intersect(at, bh :: bt)

else if ah = bh then ah :: intersect(at, bt)

else intersect(ah :: at, bt)

This follows the pattern given in the declaration of union.

(C) Michael Fourman 1994-2006

6

