CS201 mid-term examination(60 minutes)

Answer all four questions.

1. (a) Give SML definitions of the list functions
map: (’a -> ’b) -> ’a list -> ’b list and
filter: (’a -> bool) -> ’a list -> ’a list.
(b) The function fmap combines the actions of these two functions.
It is defined by

fun fmap f g = (filter f) o (map g)

What is the type of this function?

(c) Prove that the two expressions (map f) o (map g) and map (f
o g) are always equivalent if £ and g are pure functions, i.e.
involving no exceptions or other side-effects.

2. The following datatype can be used to represent trees where nodes can
have an arbitrary number of children.

datatype ’a Tree = Tree of ’a * ’a Tree list

(a) What tree does the following expression denote (i.e draw a pic-
ture):
Tree(1, [Tree(2, []), Tree(3, [Tree(4,[])])])

(b) Define a function to calculate the number of leaves in such trees.

(c) We can assign a level to each node in the tree as follows. The
node at the root is at level 1. Its children are at level 2. Their
children are at level 3 and so on. Suppose we are interested in
trees where a node at level n always has exactly n children if it
is not a leaf. Define a function to check whether a given tree has
this property.

3. Give the responses of the ML system to the following sequence of
declarations

4. The following function for exploring

local fun listall [] acc = acc
| 1istall (T (a,children) :: trees) acc = listall(children @ trees) (a
in
fun dfs t = listall t []
end

5. Write a function nodes: tree -;, int -; int such that nodes n t gives the
number of nodes of depth n in the tree t.

6. fun accsum (Lf a, acc) = a + acc
| accsum (Nd(1l,v,r), acc) = accsum(l, accsum(r, v + acc))

fun sumtree (Lf a) = a
| sumtree (Nd(1l,v,r)) = sumtree 1 + v + sumtree r

Show, by tree induction, that accsum(t, acc) = sumtree t + acc

7. Complexity??

Part 2 (90 minutes)

Answer any two of the following four questions.!

1. A priority queue is similar to a normal queue except that each item
has a priority associated with it. When retrieving an element the one
with the highest priority is chosen. If more than one element has this
priority then the one that was inserted first is chosen. We can use the
following signatures to define such queues.

signature Q_ELMT =

sig

type T

val priority : T -> int
end

signature PQUEUE =
sig
type T
structure Element: Q_ELMT
val empty: T
val insert: T * Element.T -> T
exception Empty
val remove: T -> (Element.T * T)
end

(a) Provide an implementation of the functor

functor PQueue(E: Q_ELMT): PQUEUE = struct ... end

(b) Use this functor to build a structure for manipulating priority
queues of strings, where shorter strings have higher priority than
larger ones.

(¢) Use your solution to (b) to implement a sort function on lists of
strings.

(d) Modify your code (and the signatures provided) so that the remove
function removes all occurrences of the element at the head of the
queue. The result of the call should be the element, the number
of times it appeared in the queue, and the queue that results from
its removal.

n the June exam you will have to answer two out of a choice of three questions.

