
New Types

Michael P. Fourman

October 29, 2006

Aims

In this practical, you will learn to use products to represent other types of
data, and use ML structures and signatures to control the specification and
implementation of a new type.

Assessment

Your work will be assessed on the basis of the correctness of the two struc-
tures you implement. Part 1 carries 60% of the marks for this practical; the
remaining 40% are allocated to Part 2.

Introduction

This practical continues the mathematical flavour of the first practical. How-
ever, this time, some more interesting data types are involved. The exercises
cover two different kinds of useful mathematical object: rational numbers,
and approximate real numbers.

Both of these are types of number. For each of them, you asked to provide
an implementation matching the signature NumberSig.

1

infix 4 ==;

infix 6 ++ --;

infix 7 ** //;

signature NumberSig =

sig

(* Type *)

type num;

(* Binary Operations (infix) *)

val ++ : num * num -> num

and -- : num * num -> num

and // : num * num -> num

and ** : num * num -> num

(* Unary Operations *)

and ~~ : num -> num

(* Predicates (infix) *)

and == : num * num -> bool

end;

To avoid confusion with the existing arithmetic operators, we call the opera-
tors ++, --, **, //, , and ==; we make the binary operators infix, and give
them the same precedence as their real counterparts.

For this practical, you should use the command ml prac2 to start your ML
session. This provides a few general functions1, including the functions error
and time you used in Practical 1, and includes the following infix directives:

1 Arithmetic Operators for Rational Num-

bers

Suppose that we want to do arithmetic with rational numbers. That is,
we want to be able to add, subtract, multiply and divide them and also to
test whether two rational numbers are equal. The following relations define
these operations in terms of the numerators and denominators of the rational

1To see all the functions provided, open the structure Prelude

2

numbers:

n1

d1

+
n2

d2

=
n1d2 + n2d1

d1d2

;

n1

d1

− n2

d2

=
n1d2 − n2d1

d1d2

;

n1

d1

· n2

d2

=
n1n2

d1d2

;

n1/d1

n2/d2

=
n1d2

d1n2

;

n1

d1

=
n2

d2

if and only if n1d2 = n2d1.

Rational numbers may be represented in SML as pairs of integers. Your code
should include the following lines:

(* rationals -- (numerator, denominator)*)

type num = int * int;

Your code for this part should be placed in a file CS201/Prac2/Rational.ML
The exercise involves doing two things:

1. Define these arithmetic operations in SML, and place them, together
with the type declaration in a structure Rational:NumberSig.

2. Modify your functions so that rational numbers are always reduced to
lowest terms. For example, evaluating (1,3) ++ (1,3) should produce
(2,3), not (6,9).

3

2 Interval Arithmetic

Suppose now that we wish to manipulate inexact quantities (such as those
measured parameters of physical devices) with known precision so that, when
computations are done with these approximate quantities, the results will be
numbers of known precision. One approach is to represent a number by an
interval that gives the range of possible values of an inexact quantity. Then
the result of adding, subtracting, multiplying or dividing two intervals is
itself a new interval representing the range of the result. We can represent
an interval by a pair of reals:

(* interval of uncertainty (lowerBound, upperBound) *)

type num = real * real;

To simplify the analysis, we will always assume that the first number is no
larger than the second number. (Later in the course, we will see how this
convention can be enforced in the SML language through the use of abstract
datatypes.)
You should provide an implementation of interval arithmetic Interval:NumberSig.
Your code for this part should be placed in a file CS201/Prac2/Interval.ML
The exercise involves doing two things:

1. Define the operations ++, --, **, //, , and == in SML. [For division,
it might help to consider multiplying the dividend by the reciprocal
of the divisor. Furthermore, if division is undefined on an argument,
then call the function error to terminate the execution.] Don’t forget
to start SML using ml prac2 as error will not be defined otherwise.
Place these functions in a structure Interval:NumberSig.

2. The formula for calculating the combined resistance of two resistors
placed in parallel can be expressed in two algebraically equivalent ways:

R1R2

R1 + R2

and
1

1/R1 + 1/R2

(where R1 and R2 are the two resistances). Investigate whether your
functions always produce the same result using these two equations.
If they differ, which formula produces tighter error bounds? Can you
explain why?

4

