
Topiary

Michael P. Fourman

October 29, 2006

Aims

In this practical, you will learn to reshape trees.

Assessment

Your work will be assessed on the basis of the correctness of the functions
you implement. Your code should have the structure described in the section
Practicalities, and be placed in the file CS201/Prac4/Optimise.ML under
your home directory. The assignment of marks to the various components
of the exercise is given, as comment, in the signature OptimiseSig. This
weighting is not intended to reflect the relative difficulty of implementing
the various functions; it is designed to ensure that those who do a reasonable
job on the heavily weighted functions get a reasonable mark, while those who
seek an excellent mark have to work for it.

Deadline

The revised deadline for this practical is 6.00pm, Friday 15th April.

Introduction

Seldom does a programmer have the luxury of starting from a clean slate.
In this practical, you will modify, and improve on, an existing system. Code
for this system is given, and documented, in an appendix to this document.
However, you don’t need to understand the implementation details of the
code provided in order to complete the practical.

1

In this practical we use syntax trees to represent algebraic expressions. The
existing system provides an implementation of the abstract syntax of expres-
sions, and functions to compile, and execute, code to evaluate an expression.
It uses a stack-based, evaluator; “compilation” is accomplished by post-fix
traversal of the syntax tree.

Optimisation

The stack code produced for an expression may be unneccessarily inefficient.
Evaluating the stack code for an expression may require a deeper or shallower
stack, depending on the way the expression is written. Expressions involving
only constants may be evaluated, once and for all, at ‘compile time; our code
generator produces code to evaluate them at run time. Algebraic manipula-
tion of the expression, before compilation, could lead to better code.
Your task is to apply simple algebraic transformations to the syntax tree,
before passing it to the compiler, in order to optimise the code produced.
You should perform four optimisations, in turn: reshaping, constant amalga-
mation, constant elimination, re-ordering. These are described individually
below.
Before you start coding your solutions, you should make sure you understand
what is required. To consolidate your understanding, draw diagrams of the
trees involved, for some simple examples.

Four optimisations

reshaping Code for the expression

u + (v + (w + (x + (y + z))))

produces the RPN code “u v w x y z + + + + +”, which stacks up all
the arguments before doing any addition. The algebraically equivalent
expression

((((u + v) + w) + x) + y) + z

produces the stack code “u v + w + x + y + z +”. This only
requires a stack of depth 2.

You should write a function reshape: Expn -> Expn to implement
this optimisation. Your function should apply one of the left-rotations1:

x + (y + z) ⇒ (x + y) + z

x× (y × z) ⇒ (x× y)× z

1Here, x, y, z may be arbitrary expressions, not just identifiers.

2

to reshape the tree, wherever possible. It seems easiest to do this top-
down; you should apply the rules repeatedly to a tree, and then apply
the same rules to the subtrees of the result. To reshape a tree:

• if it matches one of the patterns above, apply the transformation,
and then reshape the resulting tree;

• otherwise, if it is a sum or product recursively reshape each of its
subtrees;

• otherwise it is a leaf, leave it alone.

constant amalgamation The expression, ((x + 3) + y) + 7, produces the
stack code, “x 3 + y + 7 +”. The algebraically equivalent expression,
(x + y) + 10, produces the code “x y + 10 +”.

Our next two optimisations cooperate to combine and eliminate con-
stants. Since constants may be separated in the tree, as in the example
just given, we may have to collect them together before performing any
arithmetic. Your second optimisation should be a function that collects
together and amalgamates constants.

You should write a function amalgam: Expn -> Expn. Your imple-
mentation should assume that sequences of additions or multiplica-
tions are associated to the left; later you will use the optimisation of
the previous section to reshape the tree before applying this function.
The following rules2, applied top-down, will amalgamate multiple con-
stants, occurring on the right-hand-side of an operator, in a sequence
of multiplications, and push the product down the tree:

(x×m)× n ⇒ x×m× n

(x× y)× n ⇒ (x× n)× y

Your function should include similar rules for addition.

constant elimination Once constants have been amalgamated by the func-
tion amalgam, we can complete the elimination by evaluating constant
expressions. In a few special cases—addition of 0, multiplication by
0 or 1—we can eliminate constants altogether. Here are the revelant
algebraic transformations:

m× n ⇒ m× n

2Here, n, m are integers, n,m the corresponding literal expressions; x, y may be arbi-
trary expressions.

3

m + n ⇒ m + n

0× x ⇒ 0

x× 0 ⇒ 0

1× x ⇒ x

x× 1 ⇒ x

0 + x ⇒ x

x + 0 ⇒ x

You should write a function delim : Expn -> Expn that performs the
transformation if any of these apply, and otherwise returns the expres-
sion unchanged. Then write a function elim : Expn -> Expn that
applies delim bottom-up: given a tree,

• if it is a sum or product, first recursively eliminate constants from
each of its subtrees (this may reduce one of the subtrees to a
constant), then apply the transformations to the resulting tree;

• otherwise it is a leaf, leave it alone.

re-ordering The depth of stack required to evaluate the RPN code for a
given binary tree is one more than the right-height of the tree; the
right-height of a leaf is 0, the right-height of a node is the maximum
of,

• the right-height of the left subtree, and

• 1 plus the right-height of the right subtree.

The commutative laws for addition and mutiplication

x× y ⇒ y × x

x + y ⇒ y + x

may be applied, judiciously, to reduce the right-height of a syntax tree.
For example, the tree representing a + (b× (c + d)) has right-height 3,
while the algebraically equivalent expression, ((c + d) × b) + a has a
right-height of 1.

You should write a function rightHeight : Expn -> int to compute
the right-height of a syntax tree, and another reorder : Expn -> Expn

that applies the transformations given above, bottom-up, whenever the
right-height of x is less than the right-height of y. This means that you
should recursively apply the transformation to the two subtrees before
seeing if you need to adjust a node.

4

Finally, you should combine your optimisations into a single transformation,
using the ML infix operator o for function composition:

val optimise = reorder o elim o amalgam o reshape;

Practicalities

If you run ML with the command ml prac4, the identifiers ++ and ** will
be set up as infix, with their usual precedences. But, in order to make it
easy to exercise your optimisations, they have been made right-associative.
All the structures documented in the appendix are predefined in the prac4

database.

signature OptimiseSig =

sig

val reshape : Expn -> Expn (* 15 marks *)

val amalgam : Expn -> Expn (* 10 marks *)

val elim : Expn -> Expn (* 8 marks *)

val rightHeight : Expn -> int (* 3 marks *)

val reorder : Expn -> Expn (* 4 marks *)

val optimise : Expn -> Expn

end;

Figure 1: The functions you should implement.

As usual, a signature, OptimiseSig, (see Figure ??) has been given for the
code you are asked to write. You should place your code in a structure
Optimise:OptimiseSig in a file Prac4/Optimise.ML. Any functions you
have been unable to implement should be replaced by dummies of the correct
type.

5

Appendix - stack-based evaluation of expres-

sions

This appendix documents the code provided for the practical. The informa-
tion provided here goes beyond what you will need to complete the practical,
but it should be of general interest.
The code provided has four main components:

• a structure Expn which provides a datatype Expn representing the ab-
stract syntax of expressions.

• A structure, Environment, providing an implementation of the dictio-
nary signature EnvironmentSig given in Figure ??.

• A structure Machine which provides a type Action of stack-machine
instructions, and a function, execute, for executing sequences of these
instructions,

• a structure Compile which provides a compilation of stack code from
abstract syntax, and

These components are used by the structure TopLevel to implement a simple,
but fairly powerful, expression evaluator, that will compile a list of declara-
tions.

Abstract syntax of expressions

infixr 6 ** infixr 4 ++

structure Expn = struct

datatype Expn =

Id of string (* identifiers *)

| Lit of int (* literals *)

| op ++ of Expn * Expn (* addition *)

| op ** of Expn * Expn (* multiplication *)

end

The abstract syntax provides for algebraic expressions in + and ×, with
integer constants, and arbitrary strings as identifiers.

The environment

The values associated with identifiers will be stored in a datatstructure called
the environment. The signature EnvironmentSig, see Figure ??, provides

6

signature EnvironmentSig =

sig

type Environment

val empty : Environment

val lookup : Environment -> string -> int

val enter : (string*int) * Environment -> Environment

end

Figure 2: A signature for the structure Environment

an interface to the structure Environment, which uses an association list, a
(string*int) list of pairs, each consisting of a string and the associated
integer value, as an underlying datastructure. This implementation has,
intentionally, been made transparent, in order that you can see the effects of
declarations as they are made.

We will use the value empty to represent a new environment, the function
enter to add new bindings to an environment, and the function lookup to
find the value associated with a given string.

The abstract machine

The structure Machine, given in Figure ??, provides a model for a stack-based
evaluator. The machine has four actions: we can push a literal, or the value
of an identifier, onto the stack, or apply one of the arithmetic operations, +,
and × to the top two elements of the stack.

Code for the evaluator consists of a list of actions. The function run is
constructed by specifying the state transition corresponding to the execution
of each Action. The components of the state are: args, an argument stack;
and code, a list of actions. The environment, needed by the machine to look
up the values of identifiers, is passed as a parameter, env.

To execute a given code, we perform each of the actions in turn, starting with
an empty stack. Running code compiled from a syntax tree should leave a
single value on the stack. This value is returned as the result.

7

structure Machine =

struct

datatype Action = PushLit of int

| PushVal of string

| Mul

| Add

fun execute env code =

let exception Eval

fun v s = Environment.lookup env s

fun run(args, PushLit n :: ops) = run(n :: args, ops)

| run(args, PushVal e :: ops) = run(v e :: args, ops)

| run(a::b::args, Mul :: ops) = run(a*b :: args, ops)

| run(a::b::args, Add :: ops) = run(a+b :: args, ops)

| run([result], []) = result

| run _ = raise Eval

in

run([], code)

end

end

Figure 3: Code for the abstract machine

8

Compilation

infixr 4 ++

infixr 6 **

structure Compile =

struct

local open Expn Machine

fun codeacc (Id s, rest) = PushVal s :: rest

| codeacc (Lit n, rest) = PushLit n :: rest

| codeacc (a ++ b, rest) = codeacc(a, codeacc(b, Add :: rest))

| codeacc (a ** b, rest) = codeacc(a, codeacc(b, Mul :: rest))

in

fun code expn = codeacc(expn, [])

end

end;

The function, code, produces the stack code for a given expression. It is
based on the post-order traversal of a binary tree described in the notes.

infixr 4 ++

infixr 6 **

structure TopLevel =

struct

local

fun adddecs ((s,e) :: decs) env =

let val v = Machine.execute env (Compile.code e)

in adddecs decs (Environment.enter((s,v), env)) end

| adddecs [] env = env

in

fun compile decs = adddecs decs Environment.empty

end

end;

The structure TopLevel uses the evaluator to compile and run a sequence of
declarations. As an example of its use, consider the following ML code

9

open Expn TopLevel;

val a = Id "a" and b = Id "b" and c = Id "c"

val mydecs =[("a", Lit 4),

("b", a ++ Lit 1),

("c", a ** b),

("a", a ++ c)];

val finalEnv = compile mydecs;

Running this produces the output

val finalEnv = Env [("a", 24), ("c", 20), ("b", 5)] : Dict

Compare this with the following ML code:

val a = 4;

val b = a + 1;

val c = a * b;

val a = a + c;

(a,b,c);

which produces the final response

> val it = (24, 5, 20) : int * int * int

Concluding remarks: Functions and Environ-

ments

Interaction with the ML system generates an environment in which future
declarations are evaluated, just like the compile function provided by the
structure TopLevel. The similarity goes much deeper; by choosing the op-
propriate environment for evaluating the code for an expression, we can im-
plement let expressions and functions. The body of a let expression is
evaluated in an environment including the bindings generated by the local
declarations, but these are not added to the top-level environment. When
we apply a function, the body is evaluated in an environment which binds
the formal parameters to the values of the actual parameters. Taking these
ideas a litte further would allow us to implement recursive functions, and
curried functions. But we are already well away from the substance of the
practical.

10

