
Modular Programming

Michael P. Fourman

October 29, 2006

Aims

In this practical, you will build a basic library of ML functors that should be
useful in the project.

Assessment

Your work will be assessed on the basis of the correctness and efficiency of
the functors you implement. You will not be expected to provide implemen-
tations more efficient than those already covered in the notes and examples
(but you will be expected to use the best implementations we have introduced
so far).
Your code should be placed in the directory CS201/Prac5 under your home
directory.

Deadline

The deadline for this practical is 6.00pm, Friday 22nd April.

1. You should implement functors (implementing the appropriate datatypes)
with the following headers:

functor QUEUE(type Item):QueueSig

functor STACK(type Item):QueueSig

functor PQUEUE(type Item val >: Item * Item -> bool):QueueSig

functor EQSET(type Item val ==:Item*Item -> bool):SetSig

functor ORDSET(type Item val >:Item*Item -> bool):SetSig

functor ASSOCLIST(type Item eqtype Key):DictSig

1



The signatures referred to above are included in the prac5 ML database
(the identifier == is also declared to be infix). The signatures SetSig

and QueueSig are given in the notes; DictSig is given below.

signature DictSig =

sig

type Key

type Item

type Dict

exception Lookup

val empty : Dict

val lookup : Dict -> Key -> Item

val remove : Key * Dict -> Dict

val enter : (Key * Item) * Dict -> Dict

end

The signature DictSig refers to a dictionary—akin to the Environment
used in the example covered in Lecture Note 11, but that does not in-
clude a remove operation—in which you can enter, and remove pairs
consisting of a key and an associated item, and lookup the item as-
sociated with a given key. Your functor should use a list of pairs to
implement the signature.

The code for each functor should be placed in a file with the corre-
sponding name, plus a .ML extension (for example, the code for the
functor QUEUE should be placed in a file named QUEUE.ML).

2. You should also implement structures IntItem, StringItem, RealItem
that can be passed as arguments to your functors, and use these to test
your functors. Again, the code for each structure should be placed in
a correspondingly named file with the .ML extension.

2


