Compiler-related Algorithms

Michael P. Fourman

October 29, 2006

Introduction

This project takes up the theme of Practical 4; it is based around the idea
of program optimisation. Background material on optimisation is given as
an appendix. Before proceeding any further, you should make sure that you
fully understand this material; all of it is directly relevant to the work you
have to do.

The SML signatures and functor headers given in the text should be regarded
as a partial specification of software that has to be implemented. A direct
high-level SML implementation can be obtained by writing appropriate func-
tors. Your SML code should be written in a modular style, making use of
lists and ADTs such as sets, dictionaries, and graphs.

What you should do

First read the Appendix, which provides essential background ma-
terial. The project consists of several, related “stages”. We list these briefly.
Stages 1-3 are considered in more detail below. The remaining stages will be
covered in a subsequent note, which will be issued by 6th April.

1. Construct a DAG representation of a basic block.

2. Implement an algorithm that reconstructs an optimised basic block
from a DAG.

3. Implement an algorithm that constructs a flow graph representation
from the abstract syntax of a program.

4. Identify and optimise innermost loops.

5. Perform a global data dependency analysis to eliminate redundant
code.

6. Improve the optimisation of a basic block.

Assessment

Credit will be given for all work attempted. As a rough guide, you can get
a passing grade for a reasonable implementation of four stages. Incomplete
implementations of a stage will not score highly. If time is tight, you should
therefore complete as many stages as you can, rather than making incom-
plete attempts at all stages. Stages 1-3 depend on each other, incrementally.
Stages 4-6 depend on stages 1-3, but are otherwise independent; you can
tackle them in any order. This project counts for 20% of your final mark for
the course.

Deadlines

13.5.94 Intermediate Deadline Your implementations of stages 1-3 will
gain extra credit if they are complete by this time.

27.5.94 Final Deadline All code and reports will be frozen at 6.00pm on
this day. No further changes will then be allowed.

Housekeeping

You should use a directory named Project for your project. Code for func-
tors and signatures should be placed in correspondingly named files. Code,
like that described in the section on testing Stage 1, that applies functors
to produce structures, should be placed in a single file named ml_bind.ML.
When you have made changes to your code, you can recompile those parts of
the system that may be affected by these changes by typing PolyML.make "."
to the ML prompt. You can selectively recompile those parts of the system
needed by a particular code file by typing PolyML.make " filename".

The intermediate code

This project deals with the optimisation of programs in a simple “intermedi-
ate code”, that might be produced by a compiler, from a high-level language
such as C or Pascal, as a prelude to the generation of machine code for a
particular computer. The intermediate code is introduced in the Appendix.

2

In this section, we describe a type provided to represent intermediate code
programs.

The SML signature CodeSig describes an abstract syntax for the interme-
diate code (“abstract syntax” means the syntax of the language, ignoring
superficial distinctions of form). The functor CODE provides an implementa-
tion. Make sure that you understand how the datatype Code can be used to
represent a program. A function readCode : string -> Code is provided
to read a file in the format shown in the examples, and produce a value
of type Code. A function writeCode : (Code * string) -> unit is also
provided; it writes a textual representation of a value of typeCode to a file
(beware—if you ask it to, it will overwrite the contents of an existing file).

infix 6 +++ ——-
infix 7 *xx ///

infix 4 === <<= >>= <KL >>> =
signature CodeSig =
sig

datatype Atom = Id of string | Lit of int

datatype Expn = V of Atom
| +++ of Atom * Atom
| **%* of Atom * Atom
| /// of Atom * Atom
| ——- of Atom * Atom
datatype Cond = TRUE | FALSE

=== of Atom * Atom

|
| <<= of Atom * Atom
| >>= of Atom * Atom
| <<< of Atom * Atom
| >>> of Atom * Atom
| !'l= of Atom * Atom
datatype Statement =
:= of string * Expn
| GOTO of Cond * int

datatype Code = Code of Statement list
end

Observe that the type Expn is not recursive; only simple expressions, involv-
ing a single operator, are allowed.

Stage One: Constructing a DAG representa-
tion of a basic block

Do this in two steps. First build a number of expression trees to represent
the overall effect of the assignments in a basic block. The Appendix outlines
how this can be done.

You should write a functor

functor CODETOBLOCK(structure C:CodeSig
structure B:BlockSig) : CodeToBlockSig

The signature CodeToBlockSig describes a function that transforms a code
segment into a block representation.

signature CodeToBlockSig =

sig
structure C : CodeSig
structure B : BlockSig
val codeToBlock : C.Code -> B.Block
end

Your function codeToBlock should check that the code consists of a sequence
of assignments, and produce the corresponding block.

The signature BlockSig describes the type Block, used to represent the
overall effect of the assignment statements of the block.

signature BlockSig =
sig

datatype Expn = Id of string | Lit of int
| +++ of Expn * Expn

| *%x of Expn * Expn
| /// of Expn *
| --- of Expn *

Expn
Expn

datatype Block = Block of (string * Expn) list
end

Notice that the type Expn is recursive, unlike the type Expn specified in
CodeSig. The functor BLOCK provides an implementation of BlockSig

For the second step, recall (from the appendix) that a block can be viewed as
a DAG; later optimisations will be based on a topological sort of this DAG.
You will use the functor TOPSORT to provide this. Since TOPSORT takes an
argument of signature GraphSig, you must write code to present the a block
as a graph. To do this, you should implement a functor with header

functor BLOCKASDAG(structure B: BlockSig):
sig structure G : GraphSig
structure B : BlockSig

sharing type G.Graph
and type G.Vertex

B.Block
B.Expn

end

The result signature of this functor provides an alternative view of a block
as a DAG; a block can be viewed as a graph whose vertices are expressions.
In your implementation, you should cheat slightly by making the function
G.vertices return a list of those expressions that are the final values of
normal variables (rather than all the expressions in the block). A topological
sort of the graph starting from this list of vertices will produce a list (in
reverse order) of exactly the expressions you need to compute.

Testing

To test the implementation so far, produce a list of the expressions that must

be computed for the sample basic block given in
/Users/mfourman/Documents/Informatics/homepages/mfourman/web/teaching/mlCourse/doc/!
Place the following code in a file m1_bind.ML

structure Block = BLOCK()

structure Code = CODE(Q)

structure CodeToBlock = CODETOBLOCK (structure C = Code
structure B = Block)

structure DagBlock = BLOCKASDAG(structure B = Block)

TOPSORT(structure G = DagBlock.G)
Type PolyML.make "." to the ML prompt; this should compile all your code.
You don’t need to provide your own implementation of topological sort; the
functors BLOCK, CODE, TOPSORT are provided in the proj database.

Once the system has compiled sucessfully, you can test it by typing the
following to the ML prompt (or by reading it from a file):

structure TopSort

val testCode = Prac6.readCode
"/home/mulgara/year2/examples/cs201/doc/Project/test4";

val testBlock= CodeToBlock.codeToBlock testCode;

val toCompute = rev (TopSort.topSort testBlock) ;

Stage Two: Optimising a basic block

In this stage, you have to implement an algorithm that generates a sequence
of statements from a block (the intention is that your sequence is no longer
than the original sequence used to generate the block, and that its instruc-
tions are no more complicated).

There are two kinds of optimisation that should be done. First, assume that
any temporary variables (those which begin with _) have been introduced
by the compiler to be used within the particular basic block, and that their
values are not required on exit from the block. Thus, you should only gen-
erate code to compute the values of normal variables. Second, evaluation
of repeated sub-expressions can be eliminated. The value of each common
subexpression need only be computed once. These optimisations result auto-
matically from correct use of topSort to produce the list of expressions that
must be computed.

You have to provide a structure BlockToCode matching the signature BlockToCodeSig

signature BlockToCodeSig =

sig
structure C : CodeSig
structure B : BlockSig
val blockToCode : B.Block —-> C.Code
end

To do this you should implement and apply a functor whose header looks
something like this:

functor BLOCKTOCODE(
structure C : CodeSig
structure B : BlockSig
structure S
sig type Graph
type Vertex
val topSort : Graph -> Vertex list
end

sharing type S.Graph = B.Block
and type S.Vertex = B.Expn
): BlockToCodeSig

The ellipses (...) in this header indicate that you should incorporate other
arguments and sharing constraints to include any parameters (such as a struc-
ture providing a dictionary) needed for your implementation. As usual, the
code for this functor should be placed in an appropriately named file, and

the m1 bind.ML file should be extended to apply the functor to produce the
structure BlockToCode.

The idea is to compute the value of the expressions in the sorted list by
sucessively producing an instruction for each new expression. You will have
to introduce your own temporary variables to store intermediate results, and
keep track of the location of each value as it is computed, using a dictio-
nary. For the moment, don’t worry about minimising your use of temporary
variables. You will do that in stage 6. Just introduce new variables _n as
you need them. The function string0fInt : int -> string is provided,
in the structure Prelude,to help you construct these variables.

Testing

Test your implementation by applying your optimisation to the block pro-
duced from the test4 example.

Stage Three: Finding the basic blocks

The signature FlowSig describes the user-interface to a flowgraph represen-
tation of a program.

signature FlowSig =

sig

structure G : GraphSig

structure B : BlockSig

structure C : CodeSig

sharing type G.Vertex = int

val data : G.Graph -> G.Vertex —>

B.Block * C.Cond

end

You have to implement a structure
FlowGraph : sig include FlowSig val codeToFlow : C.Code -> G.Graph end
The result signature includes the signature FlowSig. This means that your
implementation must provide all that is specified by FlowSig, together with
the function codeToFlow.
You should implement this by writing and applying a functor
functor FLOWGRAPH (structure C2B : CodeToBlockSig
):
sig
include FlowSig
val codeToFlow : C.Code -> G.Graph
end

Your implementation should observe a number of conventions.

e The initial vertex of the flowgraph should correspond to the integer 0.
(You can use the statement number of the header of each block as the
corresponding index.)

e A basic block is represented as a values of type Block together with a
condition of type Cond.

— Where the basic block ends with a conditional goto, the condition
should be taken from this statement, and the first block in the
adjacency list should correspond to the condition being true.

— When there is no goto at the end of a basic block the condition
should be TRUE.

(Again using ellipses to indicate that you may wish to add other parameters.)
You have to implement a type to represent a flowgraph, and functions to
satisfy the signature. A simple representation for a flowgraph is given by the
declarations

type Vertex = int

datatype Graph = FG of (Vertex (* index *)
* (Vertex list) (* adjacent vertices *)
* (C2B.B.Block * C2B.C.Cond) (* block data *)
) list

There are many other possibilities.

Testing

A functor with the following header is provided. You should apply it to
the structures you have produced in stages 2 and 3, to produce optimised
versions of the code in the examples testl...test4.

functor FLOWTOCODE (structure F : FlowSig
structure B2C : BlockToCodeSig
sharing B2C.B = F.B and B2C.C = F.C):
sig
include FlowSig
val flowToCode : G.Graph -> C.Code
end

Appendix: Optimisation of intermediate code

In this note, we introduce a subject area in which there is scope for devising
a family of algorithms that all contribute to improving the solution to one
problem. The area is one that is central to computer science, albeit at a low
level: given a program written in some simple low-level language, transform
the statements/expressions of the program so that it will run more quickly.
The program may have been written by a human or, more likely, it may have
been produced by a compiler that first converts a high-level language program
into an equivalent low-level, but machine-independent, language progra

Intermediate Code

Intermediate code is a simple, low-level programming language. Its compu-
tational statements can perform at most one operation; complex expressions
are not allowed, and it has unconditional or conditional branching statements
rather than selection or repetition constructs. Our language includes vari-
ables, constants, simple operators, assignment, and branching instructions.
An atomic expression is either an identifier, which is a string, or an integer
constant. Other expressions can be formed from two atomic expressions by
applying one of the arithmetic operators, + * - /. Complex expressions are
not allowed.

A condition can be formed by comparing two atomic expressions using one
of the operators, <, <=, >, >=, == or !=.

Code for a program consists of a sequence of statements, implicitly numbered
0,1,2,3,..., in order from beginning to end. There are two different kinds
of statement:

assignment: z := expn
assigns the value of expn to z

conditional goto: if (condition) goto n
causes a branch to statement n if the condition is true.

Two different kinds of variable occur: normal variables are sequences of let-

ters and digits beginning with a letter; temporary variables, have names

beginning with “_”, followed by a sequence of numbers or letters. The sig-

nificance of temporary variables will be explained later. The files
/Users/mfourman/Documents/Informatics/homepages/mfourman/web/teaching/mlCours

!The idea is that this program is optimised, and then converted into an equivalent
machine-language program for a particular machine.

10

/Users/mfourman/Documents/Informatics/homepages/mfourman/web/teaching/mlCourse/doc/;
contain examples of programs written in this language.

Before (briefly) considering a few methods for positively transforming pro-

grams, we describe an appropriate graph-based data structure for represent-

ing programs.

Basic blocks

A basic block is a sequence of program statements in which the flow of control
enters at the beginning of the sequence and leaves at the end, without halting
or branching to any other part of the program. The leader of a basic block
is its first statement.

A basic block can be represented as a list of assignment statements, in some
cases followed by a branch statement. For some purposes this is sufficient.
However, it is often convenient to work with a more structured representation
of a basic block. We are interested in the overall effect of executing the basic
block. We represent the effect of the sequence of assignments as a collection
of expressions representing the final values of the variables on leaving the
block, in terms of their initial values on entry to the block.

To construct this representation, we step through the statements in the block,
one at a time, keeping track of the “current value” of each variable. The al-
gorithm will produce a dictionary that associates each indentifier with the
expression that represents the final value of that identifier. We construct
these incrementally, by considering the effect of each statement in turn. Ini-
tially, the dictionary is empty.

Consider the case of an assignment z := x op y, where op is one of the
operations of the language, and x and y are variables. If x and y have entries
in the dictionary, giving values d(x) and d(y), then we should record in the
dictionary, the fact that the value of z is now d(x)op d(y). If either x or y has
no entry in the dictionary, it means that it still has its initial value, which
we represent by an appropriate leaf node. Other assignment statements are
treated similarly. This construction process is repeated for each statement
of the basic block, in turn.

This construction produces a forest of expression trees. The nodes of the tree
are the expressions and their sub-expressions. The internal nodes represent
the operations to be performed; leaves represent variables or constants used
in computing the final values. We can view the forest of expression trees as
a directed acyclic graph, or DAG. The nodes of the DAG are the trees and
their subtrees; a directed edge represents the fact that one operation uses
the result of another operation or a variable or constant. When we take this

11

point of view, we consider two structurally equal trees to be equal, even if
they occur as subtrees in different parts of the forest.

Thus, the representation of a program consists of a directed graph (the flow-
graph) with vertices that are themselves directed acyclic graphs (the DAGS
representing basic blocks).

Producing code from a DAG

To produce code for a basic block from its DAG representation, we intro-
duce temporary variables to store intermediate values, and produce code to
compute a value for each node of the DAG, in turn. Before we can compute
the value of a node, we have to compute the value of each adjacent node. A
reverse topological sort gives an appropriate order for producing the code.
A dictionary can be used to keep track of the variable used to store each
temporary value.

Flowgraphs

A program can be represented by a flow graph: a directed graph whose
vertices correspond to basic blocks. A directed edge (Bj, Bs) represents the
fact that the basic block By may immediately follow the basic block B; in
some execution sequence of the program. Therefore, there is an edge joining
(B, By) if the last statement of B; is a conditional or unconditional branch
to the first statement of By, or if B, immediately follows B; in the program
and B; does not end with an unconditional branch statement. The initial
vertex of a flow graph corresponds to the basic block whose leader is the first
statement executed in the program.

Finding the flow graph for a program

It is straightforward to construct a flow graph for a program. The graph has
a vertex for each basic block leader. The leaders are defined as:

e the first program statement;

e all statements that are destinations of unconditional or conditional
branches; and

e all statements that immediately follow unconditional or conditional
branch statements.

12

Each basic block consists of its leader, plus all statements after it until (but
not including) the next leader or the end of the program. The edges of the
flow graph are as described earlier.

13

