
Deliverables

Michael P. Fourman

October 29, 2006

Introduction

The final deadline for this project is 6.00pm, Friday, 27th May. This
document gives details of how you should prepare your code for assessment.

Deliverables

The project contains stages Stage1, Stage2, Stage3, Stage4, Stage5, Stage6a, Stage6b.
To complete each stage you must write a functor. Some of your functors may
take parameters of your own choosing (such as implementations of sets and
dictionaries). Before the deadline, you must provide, as deliverables, versions
of these functors that conform to a common interface. Fortunately this is
easy; it requires minor changes to your ml bind file.
As an example, consider my implementation of the functor DATAOPT for
Stage6b. It has the following header:

functor DATAOPT(

structure F: FlowSig

structure S: SetSig

structure D: DictSig

structure Basic: BasicSig

sharing type S.Item = string

and type D.Key = F.G.Vertex = int

and type D.Item = S.Set) :

sig

structure OF: FlowSig

val dataOpt : F.G.Graph -> OF.G.Graph

end

The parameters include a set, S, a dictionary, D, and a collection, Basic of
basic functions, which I have implemented using separate functors, ORDSET,
ASSOCLIST, and BASIC.

1

To make a deliverable functor D DATAOPT with these implementations “built-
in”, I place the following lines in my ml bind file

functor D_DATAOPT(structure F : FlowSig) =

DATAOPT(

structure F = F

structure S = ORDSET(type Item = string

val < = op < : string * string -> bool)

structure D = ASSOCLIST(type Key = int

type Item = S.Set)

structure Basic = BASIC()

);

To give another example, for stage 2 you should make a declaration similar
to the following

functor D_BLOCKTOCODE(structure C : CodeSig

structure B : BlockSig) =

let structure DB = BLOCKASDAG(structure B = B)

in BLOCKTOCODE (

structure C = C

structure B = B

structure S = TOPSORT(structure G = DB.G)

structure D = ASSOCLIST(type Key = B.Expn

type Item = string)

) end;

Here, the let...in...end construction is necessary because we want to
access a substructure of the structure DB.
At the deadline, your ml bind file should contain only

• A declaration for a deliverable functor corresponding to each of the
stages you have completed. The header for each of these functors is
given below.

• A declaration of a list, completed, of the stages you have completed.
If you have completed all stages the declaration would read

val completed = [Stage1,Stage2,Stage3,Stage4,Stage5,Stage6a,Stage6b];

If you have only completed stages 1, 2, and 6a, it would read

val completed = [Stage1,Stage2,Stage6a];

All the code for your project should be contained in the directory ~/CS201/Project

and should compile using PolyML.make "." Bring a printout of your ml bind

file with you to the demonstration.

2

Testing

From Tuesday 24th May, an ML database projtest will be available. You
can use this to “test” your solutions by

• running ml with the command
ml projtest

• Running
PolyML.make ".";

• Running
projtest completed;

This “test” will only ensure that you have got the interfaces correct; it will
not test the functionality of your code—that is your responsibility. To help
you do this, running projtest will produce, for each of the stages you name,
a function from Code to Code using your implementation. For example,
running
projtest [Stage2];

will declare a function
myStage2 : Code -> Code that will use my code to produce a flowgraph,
and then use your implementation of stage 2 to produce code from that
flowgraph.

Demonstrations

Marking of your project will include a live demonstration of your system.
You will be expected to attend a short demonstration, of the code collected
for your project, during your scheduled lab session in the final week of term.
You should have received mail confirming your lab registration,
contact Mark Messenger immediately, to resolve any problems.
You should bring the following documents, each clearly labelled with your
name, login name, and student ID number, with you to the demonstration:

• a list of known bugs in your implementation,

• a printout of your ml bind file.

3

Specification of Deliverables

Stage1 functor D_CODETOBLOCK(

structure C : CodeSig

structure B : BlockSig

): CodeToBlockSig

Stage2 functor D_BLOCKTOCODE(

structure C : CodeSig

structure B : BlockSig

): BlockToCodeSig

Stage3 functor D_FLOWGRAPH (structure C2B : CodeToBlockSig):

sig

include FlowSig

val codeToFlow : C.Code -> G.Graph

end

Stage4 functor D_LOOPOPT(F : FlowSig):

sig

structure OF : FlowSig

val loopOpt : F.G.Graph -> OF.G.Graph

end

Stage5 functor D_DATAOPT(F : FlowSig):

sig

structure OF : FlowSig

val dataOpt : F.G.Graph -> OF.G.Graph

end

Stage6a functor D_DAGOPT(B : BlockSig):

sig

structure B : BlockSig

val blockOpt : B.Block -> B.Block

end

Stage6b functor D_OPTBLOCKTOCODE(

structure C : CodeSig

structure B : BlockSig) : BlockToCodeSig

4

