Propositional Planning

Michael Paul Fourman
Institute for Representation and Reasoning, and
Laboratory for Foundations of Computer Science,
Informatics, The University of Edinburgh, Scotland, UK.
Michael.Fourman@ed.ac.uk

Abstract

We describe a general setting for finite-state planning,
where planning operators, or actions, act as functions
mapping sets of states to sets of states. In particular,
we introduce propositional actions, which generalise
STRIPS actions. Sets of states may be represented by
Binary Decision Diagrams (BDDs), and propositional
actions may be directly encoded as efficient operations
on BDDS. We describe PROPPLAN a planner based on
this representation, report its performance on a vari-
ety of benchmark problems, and discuss its relation
to other BDD-based approaches to planning, and to
GRAPHPLAN, by which it was inspired.

Planning was historically treated operationally by ex-
ploring either the state space or the plan space. How-
ever, both these spaces grow exponentially with prob-
lem size, and naive search is not feasible for all but the
smallest examples. GRAPHPLAN (Blum & Furst 1997)
introduced a new data structure, the planning graph.
This planning graph provides a global analysis of the
planning problem. From the planning graph we can
see that that, at a given stage in the planning process,
some states cannot be reached, and some sets of actions
cannot be concurrently executed. Using this informa-
tion allows the search for a plan to be pruned, often
drastically. The GRAPHPLAN analysis is approximate:
the planning graph does not, in general, exclude all un-
reachable states or all incompatible sets of actions. For
some domains, GRAPHPLAN is unable to exclude any
states after the first few steps of exploration.

We present an algorithm, PROPPLAN , inspired by
GRAPHPLAN . Our algorithm is a recasting of naive,
breadth-first state-space exploration. However, rather
than explore the state space concretely, by generating
and visiting individual states, we explore it abstractly,
by computing reachable sets of states. PROPPLAN , like
PROPPLAN , first builds a layered data structure, in our
case recording, exactly, the sets ); of states reachable
in ¢ steps. PROPPLAN then uses this information to
build plans.

GRAPHPLAN | builds plans with possibly several,
non-interfering, parallel actions at each step, a form of

Copyright © 1999-2000, Michael Paul Fourman
(Michael.Fourman@ed.ac.uk) All rights reserved.

partially-ordered plan. Our algorithm produces totally-
ordered, sequential plans, executing a single action at
each step.

PRrROPPLAN , represents sets of states using ordered
Binary Decision Diagrams (0BDDs) (Bryant 1986).
This makes exact representation of the sets of reachable
states tractable for a variety of standard examples.

Domains, situations and plans

Definition 1 (domains, states and actions) A
planning domain, D consists of

e q set Sp of states,
e a set Ap of actions, and

e for each action A € A a transition relation

—A-—> CcC SxS

m
The state set and action relations of a planning domain
form a labelled transition system, a directed graph with
edges labelled by actions.

For X,) C S sets of states, and A an action, we write
XDAyfor{y€y|E!x€Xm—é—>y} (1)

X<, Vior{zeXx|Iyey Loyl (2)

Definition 2 (situations) A planning situation, S, is
given by a domain, Ds, together with two distinguished
state sets':

inits <C constraintgs C Sp
We normally omit the domain and situation subscripts,
(=)p: (=), where these can be inferred from the con-
text.

!The set constraint is used to represent a global con-
straint on the states that may be visited by a plan, for
example, to implement domain axioms. The reader will
not be misled if she assumes, for the time being, that
constraintg = Sp.



Given a situation, S, each action gives two functions
from sets of states to sets of states corresponding to
applying the action either forward or backward. If X C
S is a set of states, and A an action, we write

K)(X) = X b, constraint (3)
‘K(y) = constraintq, ) (4)

—

Given a sequence <A1> of actions, we define <AZ> to be

the composition of the functions A; : P(S) — P(S).
The set K)(X ) represents the states reachable by ap-

plying A to states in X, while ‘K(y) is the set of states
from which Y is reachable by applying A.

Definition 3 (goals, plans and achievement) A
goal is a set of states; a plan is a sequence of actions.
Given a situation, S, we say the plan, <Ai>, achieves

a goal, G, iff
—
(A;)(inits) intersects G.

We also say a plan achieves a state, y, iff it achieves
the singleton set {y}, and that a set, B, of plans covers
a goal, G, iff each y € G is achieved by some plan in B.

So, if we take a situation and a goal, and look for
plans that achieve the goal, the problem we set ourselves
is to produce a sequence of actions that will take us from
some state in the initial set to some state in the goal
set, without leaving the constraint set.

If P is a plan and A an action, we write P A for the
plan obtained by appending A to P, and if B is a set
of plans, we write BA for {P~A | P € B}

The PROPPLAN algorithm
Our planning algorithm takes a situation and a goal,
and solves the problem of finding plans that achieve
the goal. It has two stages: first (step 1) we build a
data structure, then (step 2) we plan.

Step 1: build

We build a layering of the state space. This data struc-
ture plays a role analogous to that of the planning graph
in GRAPHPLAN.

e Iteratively create the sequence </Yi> of sets of states

reachable from init via a path containing at most 4
actions.

Xp = init
X = | A(x)
AEA

Terminate whenever, either, the goal is achieved,
(reached = X;Ngoal is non-empty), or no new states
are produced (Xj11 = &;). In the latter case there
is no solution to this planning problem; terminate,
returning no plans.

Since the state space is finite, and each A is mono-
tone, one of these cases must eventually occur.

e While building the sequence <Xi>, create the se-
quence, <yi>, of set differences:

Yo =X Vir1 =X\ &
The set ); consists of states reachable in i, but no
fewer, steps from the initial state.

e Also construct, for each step, 7, the set, A;, of those
—
actions, A, such that A ();) contributes newly reach-
able states to Vi1

If the goal is reachable in n steps, then build termi-
nates after step n, with a non-empty set of reachable
goal states:

reached = X, Ngoal = Y, N goal (5)

Lemma 1 Let <)Ji>i<n and <Ai>z‘<
above. For all m < n, and for all y € Yy, there is a
plan achieving y.

N be constructed as

Proof By induction on m.

For m = 0 we have y € init — the empty plan, (),
achieves all goals. Now suppose m > 0 and y € YV,.
By construction,

VS | AOma)

AcAn,_1

So, y € K’(ym_l) for some A € A,,_1. By definition
of K), there exists x € )),,_1 such that AN 1.

By the induction hypothesis, there is a plan, P,
achieving x; the plan P A achieves .
|
Before describing our algorithm for constructing
plans from the layered state space, we prove that plans
exist to cover any set of reachable goals — a variant
of Lemma 1. This is of course an immediate corollary,
but it is worthwhile going through a separate proof, an
induction based on manipulating sets rather than indi-
vidual states, as our algorithm can then be read directly
from this proof.

Lemma 2 Let (yi>i<n and <Ai>z‘<n be constructed as

above. For all m < n, and for all G C Y, there is a
set of plans covering G.

Proof By induction on m.

For m = 0 we have G C init — the empty plan is the
only plan we need. Now suppose m > 0 and G C V.
By construction,

ym g U K>(ij—l)
Ac€Ap—1

so it suffices to show, for each A € A,,_1, that there
exists a set of plans covering

ymfl A g - g N K>(.yrnfl)



By induction hypothesis, there is a set, B, of plans
covering Ym—1<, G C Vm—1. But,

ymfl < g = {I € ymfl ’ Ely € g x—A> y} (6)

so any plan achieving YV, 1<, G can be extended, by A,
to a plan achieving G. In passing, we note, for future
reference, that all minimal-length plans achieving G,
whose final action is A, arise in this way.

Finally, observe that,

Vy € Ga 3z € (Vm-14, G) -2y
So the set, A, of plans obtained by appending A to
each plan in P, covers Ga.

Step 2: plan

This part of the algorithm is based on the proof of
Lemma 2.

Define a recursive function, plan, which takes as ar-
guments an integer, m, and a non-empty set, G C YV,
of reachable goals, and returns a set of plans covering
g, as follows:

plan(0,9) = {()}

plan(m,G) = U plan(m —1,Yn-1<, G) A
A€A—1

Now apply plan to the reachable goals found earlier
(equation 5), and return the set

plan(n,reached)

We implement sets of actions, sets of plans, and sets
of sets of plans, as lazy lists, so that we only actually
compute the plans we need.

Theorem 1 PROPPLAN returns the set of all plans of
minimal length that lead from some initial state to some
goal state.

Proof By induction on m and Lemma 2, the call
plan (m,G), where G C Y, returns the set of all
minimal-length plans achieving G. By Lemma 1, these
cover G. Finally, by construction, reached is precisely
the set of goalstates achieved by some minimal-length
plan. |

Representing sets of states

We now specialise to the (standard) situation where
states are determined by the values of a finite num-
ber of Boolean state variables. A valuation, v, is a
function assigning a Boolean value, v(i), to each state
variable, . We write v[b/x] for the valuation w such
that w(z) = b and w(y) = v(y) for y # &. Each state
corresponds to a valuation on the variables; for n vari-
ables we have 2™ states. A Boolean function in the state

variables is a Boolean-valued function, ¢ : S — {0, 1},
whose domain is the set of all states.

We use the standard notation for Boolean operations
on Boolean functions:

-,A\,V,0,1, and, for finite conjunctions, M\

(Here, 0 and 1 denote the constant functions yielding
the Boolean values 0 and 1, — denotes the function
that composes its argument, a Boolean function, with
Boolean negation, and so on...)

For each state variable, &, there is a corresponding
Boolean function, x, the projection of the state space
onto that variable: xz(v) = v(&). We may also treat
each valuation as a Boolean function: v(v) = 1, and
v(w) =0 for w £ v.

We write ¢[¢/x] for the result of substituting v for
z in .

olY/z](v) = o(v[i(v)/z])
If = is a variable, we write
Jz ¢ for the function p[0/z] V ¢[1/z]

We can quantify similarly over a set of variables. The
support of ¢ is the set of variables, x, such that ¢ #
3z ¢ (equivalently, such that ¢ # ¢[0/z], etc. ...).

Ordered Binary Decision Diagrams (OBDDs) (Bryant
1986), provide a canonical, and often effective, repre-
sentation of Boolean functions of a finite set of vari-
ables. They support efficient (i.e. linear in the sizes of
the diagrams involved) implementations of the Boolean
operations, of Boolean quantification, and of the func-
tion support. BDDs have been extensively used in sys-
tem verification to provide a tractable tool for explor-
ing large, but finite, state spaces (Clarke, Grumberg, &
Peled 1999).

PROPPLAN uses BDDs to represent sets of states. Our
algorithm uses Boolean operations on sets of states, to-
gether with the functions », and <, associated with an
action. To implement the algorithm, it therefore re-
mains to describe the implementation of these functions
as operations on BDDs. We do this first for STRIPS op-
erators.

Propositional planning

In this section we discuss the representation of plan-
ning operators as operations on Boolean functions. We
begin by showing how STRIPS operators are encoded in
ProrPPLAN , and then generalise.

STRIPS planning

STRIPS planning was introduced by (Fikes & Nilsson
1971). In this setting, we have a finite set P of proper-
ties, generated by applying a finite set of predicates to a
finite set of objects. States are finite sets of properties.
Actions are generated by instantiating a finite number
of parametrised axiom schemas.

Each STRIPS action, A, is characterised by three sets
of properties:

recond adda removep
A I



STRIPS operators correspond to partial functions
from states to states.

If precond, C z then x—A—>(x U adda \ removep)

Any variables not explicitly mentioned in the effects of
an action are unchanged by it (the frame assumption).

We use an extract from the blocksworld domain
from (McDermott 1999), which is expressed in PDDL
notation (McDermott et al. 1998) notation, to illus-
trate our constructions. Here is an action schema from
the blocksworld domain:

(:action stack
:parameters (7ob 7underob)
:precondition (and (clear 7underob)
(holding ?0b))
reffect (and (arm-empty)
(clear 7ob)
(on 7ob 7underob)
(not (clear ?7underob))
(not (holding ?0b))))

This is a PDDL representation of a STRIPS action
schema. It can be instantiated for every pair of blocks.
For example, if @ and b are blocks, we instantiate
stack(?ob 7underob) as stack(a, b) to produce an
action, A, with the following STRIPS representation:

precond, = {(clear b), (holding a)}
add s = {(arm-empty), (clear a), (on a b)}
remove4 = {(clear b), (holding a)}
To place STRIPS planning in our propositional setting,
we take each property p € P as a state variable. In our

representation, the STRIPS action, A, is characterised
by

precondition= /X p
pEprecond,

effect= /M a N N\ —r

acaddy rEremovep
changes = support(effect)
= adda U removep
So, returning to our example, stack(a, b) is repre-
sented by
precondition = (clear b) A (holding a)
effect = (arm—empty) A (clear a) A (on a b)
A —=(clear b) A —(holding a)
changes = {(arm-empty), (clear a),
(on a b), (clear b), (holding a)}
Now we turn to the propositional representation of
<, and p,. Consider X' >, V; we have to determine the
states in X’ for which A is enabled; modify those states
to produce the results of applying A, and intersect the

result with ). If the BbDs X and ) represent sets of
states then & p, V is represented by the BDD

Jdchanges(X A precondition) A effect A Y

First we conjoin X with precondition to determine
the states in which that action is enabled. Then we use
existential quantification to discard the current values
of the changing variables, and conjoin with effect to
set the new values of these variables. Finally, we conjoin
with Y.

Similarly, and symmetrically, X <, V is represented
by the BDD

X Aprecondition A dchanges(effect A Y)

Propositional actions

PDDL accomodates a number of generalisations of
the sTRIPS formalism. In particular, an action’s
precondition is a logical formula, which may include
arbitrary boolean connectives, equality, and quantifica-
tion over a finite domain of objects. PDDL requires an
action’s effect to be a conjunction of literals (atoms
or their negations).

Our representation is more general. Each proposi-
tional action is characterised by two propositions: its
precondition and its effect; and a set, changes, of
variables, these are the variables not subject to the
frame assumption—the variables that may be changed
by the action A.

This representation is simply based on what we need,
in order to define >, and <, as above. It extends the

A
STRIPS notion of action in various ways.

Generalised preconditions First, in common with
various other formalisms, including PDDL, we allow ar-
bitrary Boolean functions as preconditions. Quantifica-
tions over finite domains are expanded to conjunctions
or dijunctions.

Generalised effects Second, we allow allow arbi-
trary Boolean functions as effects. The implicit oper-
ational semantics for these is a form of benign choice.
The Boolean function represents the set of possible ef-
fects of the action; we accept a plan if it will achieve
our goal provided we make the right choices.

Limited changes Third, the frame-connection be-
tween one state and the next is expressed in our setting
by only allowing each action to change a limited set of
variables. Making this set independent of the formula
specifying the action’s effect allows two possibilities.
By making the set of changeable variables larger, we
can relax the frame assumption and consider plans that
at some steps call on benign choice to generate appro-
priate values for particular variables. A similar feature
is included in the language AR of (Cimatti et al. 1997).
Perhaps more usefully, we can allow the effect of an
action to relate variables the action can change to ones
it cannot. In the sequential setting this is merely a
notational convenience. If we allow for concurrent ex-
ecution of a number of actions, it allows us to express
some forms of concurrent, cooperative behaviour, that
would normally require sequential execution. For ex-
ample, Put = into an unoccupied bozx, can be formalised



Problem Problem size | Plan length | Time
gripper 10 65 76.2
gripper 20 125 | 1029.0
blocksworld 8 14 | 182.2
blocksworld 10 18 | 3019.3
hanoi 6 63 50.4
hanoi 8 255 | 531.0
fixit — 19 1.0

Figure 1: Timings in seconds

so that it is possible to concurrently execute a num-
ber of instantiations (provided there are enough empty
boxes).

On the negative side, an ADL action (Pednault 1989)
with conditional effects cannot be implemented directly
by a single propositional action—although it is straight-
forward to compile an ADL action with n conditional
effects to 2™ propositional actions, each corresponding
to one of the 2™ subsets of the n conditional effects.

The semantics of constraints

Our declarative treatment of the planning problem
gives a non-directed semantics to arbitrary domain ax-
ioms. A constraint on the states a plan may visit simply
restricts the set of possible effects of an action. So, if
p A q — ris a constraint, then an action whose effect
implies —r can only produce states in which either p or
q fails. This may block the action even when its pre-
conditions are satisfied: the set K)(X ) may be empty,
even when & Nprecondition, is not.

Implementation

Our prototype implementation of PROPPLAN is written
in Standard ML. We use the Poly/ML implementa-
tion of SML (Matthews 2000), and, via the PolyML
C-interface, access a standard OBDD package (Long
1993), compiled as a shared library. PROPPLAN parses
pPDDL files (McDermott et al. 1998), and currently
handles the following PDDI requirements: strips,
typing, disjunctive-preconditions, equality.
We plan to add quantified-preconditions,
conditional-effects, domain-axioms, open-world,
true-negation.

Results and discussion

We have run the prototype version of PROPPLAN on a
variety of examples taken from the GRAPHPLAN home
page (Blum, Furst, & Langford 1999), from McDer-
mott’s planning problem repository 1999 and from the
ATPS-98 planning competition (AIPS98 1999).

Figure 1 tabulates some results from these prelimi-
nary experiments (PROPPLAN version 0.2, running on
an Intel i686 under Linux). We report the time taken
to for PROPPLAN produce the first plan.

Raw timings, such as these, are hard to interpret.
We now consider, for various planners applied to some

—i—PropPlan d1s1 ——PropPlan d2s2 —A— PropPlan dms2*

—&—GraphPlan d1s1

1000 /
100

—&— GraphPlan d1s2 —A— GraphPlan dms2*

Run times in seconds (log scale)
3

[ 2 4 6 8 10 12 14 16 18 20

Problem size

Figure 2: Barrett-Weld domains

standard problems, how the time, ¢, taken to produce a
solution (for PROPPLAN this is the time taken to pro-
duce its first plan) varies with problem size, s. We plot
all timings on a log scale to show how logt varies with s.
Typically, for a chosen planner and domain, the timings
reported from the competition, plotted for various sizes
of problem, fall in roughly a straight line, indicating
exponential scaling. Variations in hardware and cod-
ing may increase performance by a constant factor, dis-
placing this line vertically; fundamental differences in
performance of the underlying algorithms on different
problems are reflected in differences between the slopes
of the lines for different problems and planners, and
in the deviations from linearity: all other things being
equal, an algorithm is better if d(logt)/0s is smaller,
and if 9%(logt)/ds” is more negative.

In Figure 2, we plot timings for a variety of prob-
lem sizes of various domains from (Barrett & Weld
1994), for PROPPLAN and GRAPHPLAN , both running
on the same hardware. PROPPLAN ’s performance on
dis1 and d1s2 is not impressive. PROPPLAN takes 31s
to solve d1s2-20; on the same hardware GRAPHPLAN
takes 0.43s to solve this problem. However, for dms2x*,
we see from the graph that PROrPPLAN outperforms
GRAPHPLAN for problems of size > 8.

Figure 3 plots our timings for PROPPLAN on the
problems from the gripper domain from (AIPS98
1999), together with the timings reported for those
planners that solved these problems in the competition.
Here we use minimal plan length for the z-axis, as a
convenient measure of problem size.

PROPPLAN always finds minimal-length plans. For
the adl-gripper—-x-20 problem of the ATPS-98 compe-
tition, PROPPLAN found a 125-step plan in 1029s. In
the competition, there were no solutions to this problem
in the ADL track; only HSP solved the strips version of
this problem, finding a plan of length 165 in 33.2s. On
each of the gripper problems, PROPPLAN finds a shorter
solution than HSP; typically the HSP plan is from 30%
to 35% longer than the minimal solution. But HSP’s



10000

1000 /
100 /

/ / —e— PropPlan
0.1 ——HSP

—— Blackbox
—=—STAN

Run times in seconds (log scale)
= T

10 20 30 40 50 60 70 80 90 10 PP

Minimal plan length

Figure 3: Gripper domain

run times are faster, and HSP’s performance scales bet-
ter with problem size.

HSP is a more traditional planner, that searches the
statespace directly. It relies on heuristics to guide the
search and invariants to prune the search space. First,
it uses an approximation to the domain to compute a
lower bound on the minimal plan length from a state
to the goal, and uses these estimates as a heuristic.
Second, it computes global mutual exclusion invariants,
and uses these to prune the search space. It is not
clear (to us) why HSP performs so well on the Gripper
domain, nor how HSP and PROPPLAN will compare on
other domains.

PROPPLAN can find all minimal-length plans; much
of the work is done in finding the first solution. For the
fixit tyre-changing domain, the standard problem re-
quires a 19-step plan. PROPPLAN takes 1.0s to find the
first solution, and then takes a further 700s to produce
all 105,084 minimal solutions to this problem, produc-
ing about 150 solutions per second.

Complexity PROPPLAN ’s performance on a partic-
ular problem depends linearly on a number of factors:
the sizes of the BDDs representing the situation; the
sizes of the BDDs representing reachable state sets; the
number of instantiated actions, and the number of steps
in a minimal plan.

actions The number of instantiated actions and pred-
icates is an important factor. Typing can exclude re-
dundant actions and propositions, and this may be crit-
ical to the effectiveness of PROPPLAN . For example,
we find the untyped version of the gripper problems
intractable. Currently, PROPPLAN instantiates all ac-
tions and predicates before doing anything else. There
is scope for dynamic instantiation: instantiating actions
only when their preconditions are found to be reachable;
and instantiating propositions only when they become
relevant to our representation of the state space. We
believe that this will be critical in some domains.

situation The BDDs representing preconditions, ef-
fects, initial conditions and goals, for STRIPS problems
are just conjunctions of literals; the number of nodes
required for each of these is linear in the number of
literals.

reachable states In the worst case, the size of BDD
required to represent an arbitrary set of states is expo-
nential in the number of state variables, but (and this
is true across a wide range of applications of BDDs),
in many cases of practical significance this exponential
blow-up does not occur. For many functions, the size
of BDD used depends critically on the ordering of vari-
ables. We have not yet given any thought to specially
crafted heuristics for selecting good variable orderings
for particularplanning problems or domains. Instead,
we have relied on the general-purpose dynamic vari-
able re-ordering heuristics provided by the BDD library,
asking this package to reorder the variables after each
build step, in order to reduce the total number of BDD
nodes used.

It is a well-known (Clarke, Grumberg, & Peled 1999)
rule-of-thumb that good variable orderings for BDDs
place related variables close together in the ordering.
Examining the variable orderings found by the heuris-
tics shows that they exploit invariants which relate dif-
ferent variables. For example, mutually exclusive pairs
of propositions are often made adjacent in the order-
ing. More general invariants are also found and ex-
ploited. For example, in the gripper domain, a given
ball is either in one of the grippers, or in one of the
rooms; exactly one of these propositions holds. This
functional relationship is exploited by an ordering that
makes these propositions adjacent. Here is the variable
ordering found by the heuristics for a problem with two
grippers, two rooms, and four balls:

(%at(balll roomb))
(%at(balll rooma))
(%carry(balll right))
(%carry(balll left))
(%free(left))
(%free(right))
(%carry(ball2 right))
(%at(ball2 rooma))
(%at(ball2 roomb))
(%carry(ball2 left))
(%at(ball3 roomb))
(%at(ball3 rooma))
(%carry(ball3 right))
(%carry(ball3 left))
(%at-robby (roomb))
(%at-robby (rooma))
(%at(ball4d rooma))
(%carry(balld right))
(%carry(balld left))
(%at(ball4d roomb))

In all our experiments, we have found that the sizes of
the BDDs used to represent the reachable state space
tend to grow with each step of the build procedure.



We see clear differences in the way these sizes grow for
different domains.

For example, in blocksworld problems the state sets
must encode sets of possible permutations of blocks in
a stack. For blocksworld — tower — 8, the BDD sizes
grow exponentially from step to step for the first 9 steps,
as the reachable sets become ever more complex, and
then remain roughly unchanged for the remaining five
steps. There are 267,886 BDD nodes in use when build
terminates after 14 steps. For hanoi problems this
blow-up does not happen; the number of nodes used
grows roughly linearly with the number of steps taken.
For hanoi — 8, after 255 steps, only 62,361 BDD nodes
are used. Because of the constraints of this problem,
each step introduces very few (always < 256, normally
far fewer) newly reachable states.

But the size of the reachable state space is not the
issue. For gripper, the number of nodes in use grows
sub-linearly. For gripper — 20, one of the 125 steps
introduces 259,978,553,354,520 newly reachable states,
but we only use 35,938 BDD nodes to represent the prob-
lem and all the layers of reachable states, after the final
step of build.

Although we have provided for PROPPLAN search to
be limited to states satisfying a given constraint, we
have not yet experimented to see how imposing con-
straints may improve performance by simplifying the
sets of reachable states, and by excluding some actions
from consideration.

The minimal number of plan steps required for a solu-
tion is not something we can change. However, we can
exploit the fact that our representation of planning is
symmetric with respect to the direction of time’s arrow.
In principle, there is no difference between searching
forwards, from init to goal, and searching backwards,
from goal to init; we simply exchange the precon-
ditions and effects of each action. Since planning gets
slower as we take more steps and produce more complex
state sets, it will be more efficient to combine these two
approaches, building successive layers of states around
both goal and init until the two sets meet in the mid-
dle.

In practice, the complexity of the sets of states reach-
able from different directions varies. (For example, be-
cause goal is typically less specific than init, and be-
cause actions designed to model time in its usual di-
rection may, when run backwards from a non-specific
goal, introduce bizarre, physically-unreal states.) Since
BDD size provides an appropriate measure of complexity
for our purposes we can use this to decide which new
layer it is most productive to build at any given stage.
However, preliminary experiments with this idea are
not encouraging. The reordering heuristics no longer
find such compact representations of the reachable state
sets. This is because the BDDs obtained by stepping
backwards from the goal do not share the invariants
of those obtained by stepping forward from the initial
conditions.

Related work

Planning as model-checking

Guinchiglia & Traverso (1999) describe a closely re-
lated approach to planning. A planning problem is
represented by a domain (in our sense), together with
a goalset, G. In their work, BDDs are used to rep-
resent sets of state-actionset pairs. They produce a
BDD, representing such a set, SA, of pairs, such that
if (s,a) € SA then: first, there is a plan leading from
s to G; and, second, a is a set of actions that can be
applied concurrently to s to lead to a state s’ nearer to
g.

Prompted by the work of Guinchiglia & Traverso,
we have experimented with a variant of PROPPLAN .
This version encodes with each reachable state in V,, 11,
the action A used to reach it from )),,. These action
tags can be used as a thread of Ariadne, to retrace,
from any reachable state, the steps that led us there,
we found that this variant built much larger BDDs than
the algorithm we have described, and performed some
ten-times slower.

One reviewer of an earlier version of this paper drew
our attention to the earlier work of Cimatti et al. (1997,
1998), which anticipates many aspects of PROPPLAN .
In particular, (Cimatti et al. 1997) describes a model-
based planner (MBP) with a BDD-based planning algo-
rithm, the first part of which which corresponds directly
to our build procedure. This is followed by a func-
tion, choose-plan, closely related to our plan function.
The difference being that Cimatti et al. choose a single
state at each step as they retrace their steps to find a
plan, whereas we carry a set of states, represented by a
BDD(this procedure coresponds to our Lemma 1).

Like GraphPlan, PROPPLAN builds a layered datas-
tructure encoding information about the set of states
reachable after some number of action steps. Graph-
Plan uses an approximate representation of the set of
reachable states. PropPlan uses BDDs to represent ex-
actly the sets of reachable states. Like Blackbox, MBP,
and PMC, PropPlan compiles a planning problem to a
propositional representation. But, unlike these, Prop-
Plan does not introduce propositional variables to rep-
resent actions.

Furthermore, in PropPlan, (generalized) strips oper-
ators are represented directly by efficient operations on
BDDs in n state variables, rather than, as is traditional
in model checking, as abstract transition relations re-
quiring 2n variables. PropPlan is directly comparable
with PMC, and it will be instructive to compare the
sizes of the BDD representations used by the two sys-
tems. Thus, the significant innovation we introduce is
our representation of plan operators, which appears to
confer directly the benefits that might be expected from
applying disjunctive partitioning (Clarke, Grumberg, &
Peled 1999), to the representation used by both Cimatti
et al. and Guinchiglia & Traverso.



GRAPHPLAN revisited

GRAPHPLAN uses an approximate representation of
sets of properties, and sets of actions.

A set S of subsets of X is approrimately represented
by a subset s C X, equipped with a symmetric, irreflex-
ive binary mutez relation #. such that

USQS

Ve,y€ X oty > JA€Sxr € ANyeA

Planning depends on the construction of a planning
graph, a sequence of sets of properties, P;, and sets of
actions, A;, constructed alternately, starting with Py =
initial. Each of these sets of properties or actions
is equipped with a mutex relation, so that the sets of
reachable states, and sets of concurrently executable
actions, at each stage are approximately represented
within the planning graph.

Direct comparison with PROPPLAN is not possible,
as GRAPHPLAN allows, at each stage, for a set of non-
interfering actions to be executed concurrently, whereas
the PROPPLAN semantics of actions is strictly sequen-
tial. It would be instructive to re-engineer GRAPHPLAN
using BDDs to represent, exactly, both the sets of reach-
able states and the sets of concurrently executable ac-
tions.

Planning as satisfiability

(Kautz & Selman 1992) introduced this approach. A
planning problem is encoded as a satisfiability prob-
lem, by producing formulae P, such that a plan of
length n may be extracted from any valuation satisfying
P,. Radivojevi¢ & Brewer (1995, 1993) apply a simi-
lar encoding to the scheduling problem for hardware
synthesis, and use BDDs to compute valid schedules.
These approaches differ from our work, and from that
of Guinchiglia & Traverso, in that action-time pairs are
treated as propositional variables. Nevertheless, many
aspects of the encodings used, and some of the problems
encountered, are similar. For example, Kautz & Selman
discuss the use use of constraints, similar to those we
allow, to simplify the state space in their representation
of the planning problem.

References
AIPS98. 1999. Artificial intelligence plan-
ning systems competition results. Web page.
http://ftp.cs.yale.edu/pub/mcdermott/
aipscomp-results.html.
Barrett, A., and Weld, D. 1994. Partial-order plan-
ning: evaluating possible efficiency gains. Artificial
Intelligence 67(1):71-112.
Blum, A. L., and Furst, M. L. 1997. Fast planning
through planning graph analysis. Artificial Intelli-
gence 90:281-300.
Blum, A.; Furst, M.; and Langford, J. 1999. Graph-
plan home page. Web page. http://www.cs.cmu.edu
“avrim/graphplan.html.

Bryant, R. E. 1986. Graph-based algorithms for
boolean function manipulation. IEEE Transactions
on Computers C-35(8):677-691.

Cimatti, A.; Guinciglia, E.; Guinchiglia, F.; and
Traverso, P. 1997. Planning via model checking: A de-
cision procedure for AR. In Proceedings of the Fourth
European Conference on Planning — ECP °97.

Cimatti, A.; Roveri, M.; and Traverso, P. 1998. Au-
tomatic OBDD-based generation of universal plans in
non-deterministic domains. In AAAI/TAAI Proceed-
1ngs, 875-881.

Clarke, Jr., E. M.; Grumberg, O.; and Peled, D. A.
1999. Model Checking. The MIT Press.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new ap-
proach to the application of theorem proving to prob-
lem solving. Artificial Intelligence 5(2):189-208.

Guinchiglia, F., and Traverso, P. 1999. Planning as
model checking. In Biundo, S., and Fox, M., eds.,
Proceedings of the Fifth Furopean Conference on Plan-
ning (ECP99), Lecture Notes in Artificial Intelligence,
1-20. Durham, UK: Springer-Verlag.

Kautz, H., and Selman, B. 1992. Planning as satisfi-
ability. In Neumann, B., ed., Proceedings of the 10th
European Conference on Artificial Intelligence, 359—
363. John Wiley & Sons.

Long, D. E. 1993. A binary decision diagram
(BDD) package. Web page. http://www.cs.cmu.edu
“modelcheck/bdd.html.

Matthews, D. 2000.
http://www.polyml.org.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock,
C.; Ram, A.; Veloso, M.; Weld, D.; and Wilkins,
D. 1998. PDDL-the planning domain definition lan-
guage. Technical Report CVC TR-98-003/DCS TR-
1165, Yale Center for Computational Vision and Con-
trol.

PolyML. WWW.

McDermott, D. 1999. Planning problem repository.
ftp://ftp.cs.yale.edu/pub/mcdermott/domains/.

Pednault, E. 1989. ADL: Exploring the middle ground
between STRIPS and the situation calculus. In Proc.
1st Int. Conf. on Principles of Knowledge Representa-
tion and Reasoning, 324-332.

Radivojevi¢, 1., and Brewer, F. 1993. Symbolic
techniques for optimal scheduling. In Proc. 4th Syn-
thesis and Simulation Meeting and Int. Interchange
(SASIMI).

Radivojevi¢, 1., and Brewer, F. 1995. Symbolic
scheduling tehniques. IEICE Trans. Information and
Systems.



