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Overview

Proportional error + Proportional Integral + Proportional
Derivative = PID
Effects of the gain factors
Non-stationary targets
PID tuning
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Combining controllers

Control signals can chosen:

Proportional to error (P)
Proportional to error Integral (I)
Proportional to error Derivative (D)

How do the different modes of the set-point interact?
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Combine as PID control (Three mode control)

Black sectors denote negation

T = Kp

(
θgoal − θ

)
+ Ki

∫ t

0

(
θgoal − θ

(
t ′
))

dt ′ + Kd
dθ
dt

PID controllers are used in by far the most continuous
feedback control applications
How to choose Kp, Ki , Kd?
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Characterising the behaviour of a control system (SASO)

1 Stability: Returns to set point after (small) perturbations
2 Accuracy (Steady-state error): the difference between the

steady-state output and the desired output.
3 Settling time: time it takes for the system to converge to its

steady state
Rise time: time it takes for the plant output to rise beyond
90% of the desired level for the first time

May be long in the case of on-going oscillations
Rise time and settling time replace half time (which was
meaningful only for non-oscillatory exponential convergence)

4 Overshoot: how much the the peak level is higher than the
steady state, normalised against the steady state.

Gingham Zhong: PID Controller Tuning: A Short Tutorial
saba.kntu.ac.ir/eecd/pcl/download/PIDtutorial.pdf
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PID control example

Second-order system

T (t) = J
d2θ

dt2 + F
dθ
dt

Controller

Kp

(
θgoal − θ (t)

)
+ Ki

∫ (
θgoal − θ (t)

)
dt + Kd

dθ
dt

= T (t)

Numerical solution with:

A1 = Kd−F
J , A0 = −Kp

J , C = Ki
J

∫ t
0

(
θgoal − θ (t)

)
dt + Kp

J θgoal

d2θ

dt2 = A1
dθ
dt

+ A0θ + C

2015 IVR M. Herrmann



PID control example

1 Behaviour at Kp = Ki = Kd = 0: Choose J and F such that
the system is overdamped (see 2nd order diff-eq. example)

2 Start with proportional control: Ki = Kd = 0, θgoal = 1
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PID control example

3 Choose a reasonable rise time, e.g. Kp = 1, now vary Ki :
Similar effect as increasing Kp
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PID control example

4 Ki did not help, so set Ki = 0 and Kp = 1, and vary Kd :
Reduces oscillations, rise time still low (e.g. at Kd = 0.5)

Note, that the negative sign of Kd is for consistency with the equation two slides back. Considered as
artificial friction, the used differential term is clearly damping.
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PID control example: Evaluation

Often PD (proportional + derivative) control is sufficient
Integral term needed only if steady state error is expected or if
the system is noisy
Consider priorities when determining overshoot:

When catching a ball: fast rise time is essential (could set goal
state to a lower value and make sure that the ball arrives at
the overshoot)
When moving towards a position near an obstacle: slow rise
time, overdamped movement → no overshoot
In many other cases: Adjust Kd to realise critical damping
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Effects of increasing a parameter independently

Parameter Rise time Overshoot
Settling
time

Steady-
state
error

Stability

Kp Decrease Increase
Small
change

Decrease Degrade

Ki Decrease Increase Increase
Decrease
signific-
antly

Degrade

Kd
Minor
increase

Decrease
Minor
change

No effect
in theory

Improve
(if Kd is
small)

http://en.wikipedia.org/wiki/PID_controller (except red entries)
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Typical steps for designing a PID controller

Determine what characteristics of the controlled system need
to be improved
Use Kp to decrease the rise time.
Use Ki to eliminate the steady-state error.
Use Kd to reduce the overshoot and settling time.

This works in many cases
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JFYI: Ziegler-Nichols tuning rule (reaction curve method)

Practical control method, i.e. the controlled system is
accessed experimentally

1 Set I and D gains to zero.
2 Check sign of gain (say positive)
3 Increase P gain (from zero) until until output starts to oscillate
→‘ultimate gain’ Ku and oscillation period Tu

4 Use Ku and Tu to set Kp, Ki and Kd based on heuristic
values: Kp = 0.65Ku, Ki = 2Kp/Tu and Kd = KpTu/8

May create some overshoot
Stable to disturbances
Not very good in tracking tasks
Not equally good in all applications
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Ziegler-Nichols rule tested

Second order system (F = 0.5, J = 0.5)
Ku ≈ 1: one full oscillation period visible ⇒ Tu = 5
⇒ Kp = 0.65, Kd = 1.25, Ki = 0.26 (scaled by time step!)

Performance similar as tuned by hand (Z-N rule works best for
first-order systems!)

Why Do We Keep Hinting That Results are Lousy? (http://www.mstarlabs.com/control/znrule.html)
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Limitations of PID control

PID control is usually the best controller with no model of the
process (PID can be used on top of model-based control)
Does not provide optimal control
Is only reactive, may be slow, and needs errors to be able to
react (combine with feed-forward control or forward models)
D-term may suffer from intrinsic or measurement noise (⇒ use
low-pass filter)
D-term (error derivative) and I-term may suffer from sudden
set-point changes (⇒ use set-point ramping)
Is tuned to a particular working regime (⇒ gain scheduling)
Is linear and (anti)symmetric (e.g. usually a heating system
does not involve symmetric cooling)
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Control with changing set points

In tracking tasks the set point changes continuously: goal
trajectory
Rise time and settling time appear as delays (phase shifts)
which depend on the rate of change of the goal trajectory
Delays can be reduced by high-gain proportional control
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Control with changing set points

Differential feedback can reduce the overshoot, but tends to
increases phase shift
Integral feedback will not improve the situation
Solution: Forward models
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Changing set-points: Possible improvements

Set-point switching: Change the set point in a ramp-like way
Initialising the integral term at a suitable value
Disabling the integral function until the state has entered the
controllable region
Limiting the time period over which the integral error is
calculated
Preventing the integral term from accumulating above or
below pre-determined bounds
For a constant set-point, the D-term can be either d

dt θ or
d
dt

(
θgoal − θ (t)

)
, now the second form should be considered

http://en.wikipedia.org/wiki/PID_controller
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More on control (JFYI)

Non-linear control: How to deal with complex systems?

Linearisation, gain-scheduling, Lyapunov stability, sliding-mode
control. ...

Robust control: Uncertain parameters or disturbances?

H∞ control: Stabilisation (and other desired properties) with
guaranteed performance, ...

Adaptive control: Changing environments?

System identification, model-based control, self-tuning, ...

Distributed control: Communication, negotiation and all of the above

Intelligent control: How to deal with all the remaining cases?

Use AI, learning, evolutionary algorithms etc.
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Further reading on control theory and applications

Most standard control textbooks discuss PID control, e.g.: Andrew
D. Lewis: A Mathematical Approach to Classical Control. 2003.
www.mast.queensu.ca/~andrew/teaching/math332/notes.shtml

igor.chudov.com/manuals/Servo-Tuning/PID-without-a-PhD.pdf
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