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Overview

Proportional error + Proportional Integral 4+ Proportional
Derivative = PID

Effects of the gain factors

Non-stationary targets
PID tuning
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Combining controllers

Control signals can chosen:

e Proportional to error (P)
@ Proportional to error Integral (1)

@ Proportional to error Derivative (D)

How do the different modes of the set-point interact?
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Combine as PID control (Three mode control)

eg error

Black sectors denote negation
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@ PID controllers are used in by far the most continuous

feedback control applications
@ How to choose K, Ki, K47
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Characterising the behaviour of a control system (SASO)

@ Stability: Returns to set point after (small) perturbations

@ Accuracy (Steady-state error): the difference between the
steady-state output and the desired output.

© Settling time: time it takes for the system to converge to its
steady state
Rise time: time it takes for the plant output to rise beyond
90% of the desired level for the first time
e May be long in the case of on-going oscillations

o Rise time and settling time replace half time (which was
meaningful only for non-oscillatory exponential convergence)

@ Overshoot: how much the the peak level is higher than the
steady state, normalised against the steady state.

Gingham Zhong: PID Controller Tuning: A Short Tutorial
saba.kntu.ac.ir/eecd /pcl/download /PIDtutorial.pdf
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PID control example

Second-order system

2

Controller

Ko (0g0a1 —0(1)) + K,-/ (goal — 0(2)) de + Kdi,f — T (1)

Numerical solution with:

Ky—F K Ki [t K
Al = dJ , Ao = _Tp: C= 7]0 <9goa| - 0“)) dt + Tp9g0a|

d?6 do
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PID control example

@ Behaviour at K, = K; = K4 = 0: Choose J and F such that
the system is overdamped (see 2nd order diff-eq. example)
@ Start with proportional control: K; = Ky =0, egoal
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PID control example

© Choose a reasonable rise time, e.g. K, = 1, now vary K;:
Similar effect as increasing K,
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PID control example

Q K; did not help, so set K; =0 and K, =1, and vary Ky :
Reduces oscillations, rise time still low (e.g. at Ky = 0.5)
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Note, that the negative sign of K is for consistency with the equation two slides back. Considered as
artificial friction, the used differential term is clearly damping.
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PID control example: Evaluation

e Often PD (proportional + derivative) control is sufficient

@ Integral term needed only if steady state error is expected or if
the system is noisy

@ Consider priorities when determining overshoot:

o When catching a ball: fast rise time is essential (could set goal
state to a lower value and make sure that the ball arrives at
the overshoot)

e When moving towards a position near an obstacle: slow rise
time, overdamped movement — no overshoot

e In many other cases: Adjust Ky to realise critical damping
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Effects of increasing a parameter independently
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http://en.wikipedia.org/wiki/PID _controller (except red entries)
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Typical steps for designing a PID controller

@ Determine what characteristics of the controlled system need
to be improved

@ Use K, to decrease the rise time.
@ Use K; to eliminate the steady-state error.

@ Use K, to reduce the overshoot and settling time.

This works in many cases

2015 IVR M Herrmann



JFYI: Ziegler-Nichols tuning rule (reaction curve method)

000

Practical control method, i.e. the controlled system is
accessed experimentally

Set | and D gains to zero.
Check sign of gain (say positive)

Increase P gain (from zero) until until output starts to oscillate
—‘ultimate gain' K, and oscillation period T,

Use K, and T, to set K, K; and Ky based on heuristic
values: K, = 0.65K,, Ki = 2K,/ T, and Ky = K, T,/8

May create some overshoot

Stable to disturbances

Not very good in tracking tasks
Not equally good in all applications
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Ziegler-Nichols rule tested

@ Second order system (F = 0.5, J = 0.5)
e K, = 1: one full oscillation period visible = T, =5
e = K, =0.65 Ky = 1.25, K; = 0.26 (scaled by time step!)
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@ Performance similar as tuned by hand (Z-N rule works best for
first-order systems!)

Why Do We Keep Hinting That Results are Lousy? (http://www.mstarlabs.com/control/znrule.html)
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Limitations of PID control

@ PID control is usually the best controller with no model of the
process (PID can be used on top of model-based control)

@ Does not provide optimal control

@ Is only reactive, may be slow, and needs errors to be able to
react (combine with feed-forward control or forward models)

@ D-term may suffer from intrinsic or measurement noise (= use
low-pass filter)

@ D-term (error derivative) and |-term may suffer from sudden
set-point changes (= use set-point ramping)

@ Is tuned to a particular working regime (= gain scheduling)

@ Is linear and (anti)symmetric (e.g. usually a heating system
does not involve symmetric cooling)
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Control with changing set points

@ In tracking tasks the set point changes continuously: goal
trajectory

@ Rise time and settling time appear as delays (phase shifts)
which depend on the rate of change of the goal trajectory

@ Delays can be reduced by high-gain proportional control
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Control with changing set points

o Differential feedback can reduce the overshoot, but tends to
increases phase shift
@ Integral feedback will not improve the situation

@ Solution: Forward models
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Changing set-points: Possible improvements

@ Set-point switching: Change the set point in a ramp-like way
e Initialising the integral term at a suitable value

@ Disabling the integral function until the state has entered the
controllable region

@ Limiting the time period over which the integral error is
calculated

@ Preventing the integral term from accumulating above or
below pre-determined bounds

@ For a constant set-point, the D-term can be either %9 or

% <9goa| -6 (t)) now the second form should be considered

http://en.wikipedia.org/wiki/PID _controller
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More on control (JFYI)

Non-linear control: How to deal with complex systems?

e Linearisation, gain-scheduling, Lyapunov stability, sliding-mode
control. ...

@ Robust control: Uncertain parameters or disturbances?

o H, control: Stabilisation (and other desired properties) with
guaranteed performance, ...

Adaptive control: Changing environments?

e System identification, model-based control, self-tuning, ...

Distributed control: Communication, negotiation and all of the above

Intelligent control: How to deal with all the remaining cases?

o Use Al, learning, evolutionary algorithms etc.
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Further reading on control theory and applications

Most standard control textbooks discuss PID control, e.g.: Andrew
D. Lewis: A Mathematical Approach to Classical Control. 2003.
www.mast.queensu.ca/~andrew/teaching/math332/notes.shtml

igor.chudov.com/manuals/Servo-Tuning/PID-without-a-PhD.pdf
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