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Overview

Feedback control
Proportional error control
Proportional Integral control
Proportional Derivative control
Next time PID
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Control paradigms

Open loop control

Disturbances?

Feed-forward control

Feedback control
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Feedback control

Simple and direct, does not require a model of the process
Robust in the face of unknown and unpredictable disturbances
Requires sensors capable of measuring output
Tuning required: Low gain is slow, high gain is unstable
Delays in feedback loop may interfere with the control law
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Servo control (Proportional error control)
Simple dynamic example
(C = VB ,B = M

k2
R , A = k1):

VB =
M
k2

R
ds
dt

+ k1s

Control law:

VB = K
(
sgoal − s

)
So now have new process:

K
(
sgoal − s

)
=

M
k2

R
ds
dt

+ k1s

Ksgoal =
M
k2

R
ds
dt

+ (K + k1) s

With steady state:

s∞ =
Ksgoal
K + k1

And half-life:

τ 1
2
= 0.7

MR
(K + k1) k2
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Steady state error

sgoal − s∞ =
k1

K + k1
sgoal

k1 is determined by the
motor physics: e = k1s
Large K brings the state
close to desired, but we
cannot put an infinite
voltage into the motor!
For any sensible K the
system will undershoot
the target velocity.
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Proportional (P) Control

Convenient, simple, powerful (fast and proportional reaction to
errors)
No need for modelling (sign of K must be known and the
order of magnitude)
Problem: Steady state error
Other problems: May lead to oscillations about the goal state
(later!)
From now on K will be called Kp

2015 IVR M. Herrmann



Proportional Integral (PI) Control

If we could estimate this error we could add it to the control signal:

VB = Kp

(
sgoal − s

)
+ ε

The best way to estimate it is to integrate the error over time:

ε =

∫ (
sgoal − s

)
dt

Obtain new control law:

VB = Kp

(
sgoal − s

)
+ Ki

∫ (
sgoal − s

)
dt

Basically, this sums some fraction of the error until the error is
reduced to zero.

With careful choice of Kp and Ki this can eliminate the steady
state error.
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Back to PID control: Steady state error – Load droop

If the system has to hold a load against gravity, it requires a
constant torque
Similar to steady state error in the first order system
But P controller cannot do this without error, as torque is
proportional to error (so, needs some error)
If we knew the load L could use

T = L− Kpθ

But in practice this is not often possible
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Proportional integral (PI) control

As before, we integrate the error over time, i.e.

L = Ki

∫ t

0

(
θgoal − θ

(
t ′
))

dt ′

Effectively this gradually increases L until it produces enough
torque to compensate for the load

PI copes with load droop
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Towards PID control

Proportional control reduces large errors: Fast and powerful
Proportional integral: Precise and delicate, deals with
remaining errors if they accumulate
What else might happen?

Large errors may accumulate as well such that PI can
overshoot
The state can oscillate about the the goal state

Outlook:

Solution of the oscillation (ringing) problem: Dampen
oscillations by “artificial friction” which will be provided by
derivative control → PD
We will have three modes of feedback control: P, PI, PD and
finally arrive at PID control is the combination of P, PI, PD
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