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Overview

Overshoot and oscillations in control systems
Second order differential equations as models for systems with
oscillations
Proportional Derivative control to complement Proportional
error control and Proportional Integral control towards PID
control
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Towards PID control

Proportional control reduces large errors
Proportional integral control deals with remaining errors if they
accumulate
What else might happen?

Large errors may accumulate as well such that PI can
overshoot
The state can oscillate about the the goal state

due to inertia
due to delays
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Oscillations in Feedback system due to time delays
How do Oscillations come about?

Imagine trying to move a robot to some zero position with the
simple control law:

If xt < −δ meters, move forward at 1 m/sec
If xt > δ meters, move backward at 1 m/sec
If −δ < xt < δ, then stop

What happens if there is a delay in feedback that exceeds 2δ
seconds?
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Oscillations are not all bad: Central Pattern Generators

Many movements in animals, and robots, are rhythmic, e.g. walking

Rather than explicitly controlling position, can exploit an oscillatory
process, e.g.

If A is tonically active, it will excite B
When B becomes active it inhibits A
When A is inhibited, it stops exciting B
When B is inactive it stops inhibiting A

Useful not only for control of periodic repeated movements but
possibly also as elements for complex movement sequences.
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CPGs in Robotics
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Oscillations in Feedback Systems

In general, a time-lag in a feedback loop will result in
overshoot and oscillation.
Sometimes we want oscillation, e.g. CPG
Depending on the dynamics, the oscillation could fade out,
continue or increase.
Note that integration introduces a time delay
Time delays are equivalent to energy storage e.g. inertia will
cause similar effects.
We should study control systems with inertia ...
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Oscillations in General Dynamical Systems

For a first order differential equation of one variable and
without delay the present state determines uniquely the
behaviour. Therefore, the system cannot be oscillatory.
Second order differential equations (or systems of dim ≥ 2)
can describe systems where oscillations are possible. Solutions
of such differential equations are characterised by an initial
velocity in addition to the initial state.
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Second order system

Want to move a simple robot arm to a desired angular position
θgoal
For a DC motor on a robot joint

T = J
d2θ

dt2 + F
dθ
dt

where J is the inertia of the joint and F is the joint friction

Proportional control

Kp

(
θgoal − θ

)
= T
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Second order system solution

For simplicity let θgoal = 0. Then the system process is

Kpθ = J
d2θ

dt2 + F
dθ
dt

The solution to this equation has the form (insert and check)

θ = e−
F
2J t
(
c1e

ω
2 t + c2e−

ω
2 t
)

where

ω =

√
F 2

J2 −
4Kp

J
which may be complex =⇒ oscillatory solution

c1, c2 can be determined from the initial state and initial velocity.
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A remark on linear differential equations

Second-order system

d2θ

dt2 = A1
dθ
dt

+ A0θ + C

Define ρ = dθ
dt and insert

dρ
dt

= A1
dθ
dt

+ A0θ + C

We get an equivalent two-dimensional first-order system( dρ
dt
dθ
dt

)
=

(
A1 A0
1 0

)(
ρ
θ

)
+

(
C
0

)
Diagonalize:

R

(
dρ
dt
dθ
dt

)
= R

(
A0 A1
1 0

)
R−1R

(
ρ
θ

)
+ R
(

C
0

)
such that R

(
A0 A1
1 0

)
R−1 =

(
λ1 0
0 λ2

)

Transform to the new coordinates, solve two simple diff-eqs with
constant terms, transform back to ρ,θ, insert initial conditions, done
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Over- and Under-Damping

The system behaviour depends on J, F , Kp as follows:

θ = e−
F
2J t
(
c1e

ω
2 t + c2e−

ω
2 t
)

with ω =

√
F 2

J2 −
4Kp

J

The system returns to the goal with under-damped, sinusoidal
behaviour for

F 2

4Kp
< J

The system returns to the goal with over-damping

F 2

4Kp
> J

The system returns to the goal (critical damping)

F 2

4Kp
= J ⇒ solution becomes: θ = c e−

F
2J t
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Proportional derivative (PD) control

Often, e.g. for large robots, inertia is large and friction small.

Consequently the system overshoots, reverses the error and control
signal, overshoots again . . .

To actively brake the motion, we want to apply negative torque
when error is small and velocity high

Make

T = Kp

(
θgoal − θ

)
+ Kd

dθ
dt

= J
d2θ

dt2 + F
dθ
dt

This can be seen as P (or PI) control with artificial friction

Kp

(
θgoal − θ

)
= J

d2θ

dt2 + (F − Kd )
dθ
dt
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Proportional derivative (PD) control

Example

T = J
d2θ

dt2 + F
dθ
dt

Control law (P and PD):

T = Kp

(
θgoal − θ

)
+ Kd

dθ
dt

Dampens oscillations, improves stability
Useful for large inertia & small friction (adds artificial friction)

Derivative term should be d
dt

(
θgoal − θ

)
, use −Kd in this case

Derivative of θ can improve stability even when θgoal changes

Possible problems:

Derivative is sensitive to measurement noise
Tends to slow down the control action
D-term does not contain information about the (constant)
goal state → usually in combination with other control signals
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Combine as PID control (Three mode control)

Black sectors denote negation

T = Kp

(
θgoal − θ

)
+ Ki

∫ t

0

(
θgoal − θ

(
t ′
))

dt ′ + Kd
dθ
dt

How do Kp, Ki , Kd interact?
How to choose Kp, Ki , Kd?
PID controllers are used in more than 95% of continuous
feedback control applications (as of 1995)
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Summary

Proportional error control: Fast and powerful
Proportional Integral control: Precise and delicate
Proportional Derivative control: Stabilising (unless the system
is rather noisy)
Usually combinations, i.e. PD, PI or PID, are used
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