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Overview

@ Overshoot and oscillations in control systems

@ Second order differential equations as models for systems with
oscillations

@ Proportional Derivative control to complement Proportional
error control and Proportional Integral control towards PID
control
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Towards PID control

@ Proportional control reduces large errors

@ Proportional integral control deals with remaining errors if they
accumulate

@ What else might happen?

o Large errors may accumulate as well such that Pl can
overshoot
e The state can oscillate about the the goal state

o due to inertia
o due to delays
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Oscillations in Feedback system due to time delays

How do Oscillations come about?

Imagine trying to move a robot to some zero position with the
simple control law:

o If x; < —J meters, move forward at 1 m/sec
o If x; > § meters, move backward at 1 m/sec
o If =6 < x; < 0, then stop

What happens if there is a delay in feedback that exceeds 26
seconds?
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Oscillations are not all bad: Central Pattern Generators

Many movements in animals, and robots, are rhythmic, e.g. walking

Rather than explicitly controlling position, can exploit an oscillatory
process, e.g.

If A is tonically active, it will excite B
When B becomes active it inhibits A
When A is inhibited, it stops exciting B
When B is inactive it stops inhibiting A

Useful not only for control of periodic repeated movements but
possibly also as elements for complex movement sequences.
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CPGs in Robotics
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Oscillations in Feedback Systems

@ In general, a time-lag in a feedback loop will result in
overshoot and oscillation.

@ Sometimes we want oscillation, e.g. CPG

@ Depending on the dynamics, the oscillation could fade out,
continue or increase.

o Note that integration introduces a time delay

o Time delays are equivalent to energy storage e.g. inertia will
cause similar effects.

We should study control systems with inertia ...
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Oscillations in General Dynamical Systems

f(x) |

arrows indicate whether x(t) increases or decreases

@ For a first order differential equation of one variable and
without delay the present state determines uniquely the
behaviour. Therefore, the system cannot be oscillatory.

e Second order differential equations (or systems of dim > 2)
can describe systems where oscillations are possible. Solutions
of such differential equations are characterised by an initial
velocity in addition to the initial state.
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Second order system

ezoal error | Amplification Output
(% K of current I torque T
0

Want to move a simple robot arm to a desired angular position
0

goal
For a DC motor on a robot joint

d?0  _do
T=J3+Fp

where J is the inertia of the joint and F is the joint friction

Proportional control

Ko (Bgoal —0) = T
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Second order system solution

For simplicity let 6,,,; = 0. Then the system process is

goa

%0 _df
Kol = J gz + F g

The solution to this equation has the form (insert and check)
,it W Yt
0 =e 27 (cle2 + e 2)

where

4K,
J2 o
which may be complex = oscillatory solution

w =

¢1, ¢ can be determined from the initial state and initial velocity.
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A remark on linear differential equations

Second-order system

d?0 do
Pl Ald + Apgf + C
Define p = and insert
dp do
=A—+A
P ld + Al + C

We get an equivalent two-dimensional first-order system

(4)-(1 ) (5)+(5)

Diagonalize:

dp Ao A C Ao A A O

R gg) = R( 0 1)R*1R(p) +R( ) such that R( )R = ( )
<dt 10 0 0 10 0 X2
Transform to the new coordinates, solve two simple diff-eqs with

constant terms, transform back to p,d, insert initial conditions, done
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Over- and Under-Damping

The system behaviour depends on J, F, K} as follows:

F w w F2 4K
g =e 21t (C ezt +¢ e*5t) with S -
1 2 w 7 J
@ The system returns to the goal with under-damped, sinusoidal
behaviour for

F? J
— <
4K,

@ The system returns to the goal with over-damping
F2
— > J
4K,

@ The system returns to the goal (critical damping)
Ft

—— =J = solution becomes: 0 = ce™ 27
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Proportional derivative (PD) control

Often, e.g. for large robots, inertia is large and friction small.

Consequently the system overshoots, reverses the error and control
signal, overshoots again . ..

To actively brake the motion, we want to apply negative torque
when error is small and velocity high

Make
T=K,(0 o) + kL = 480, g2
= p(goa|— )+ o = Tae T

This can be seen as P (or Pl) control with artificial friction

d?0 dé
Kp <0goa| - 9) = J@ + (F = Ka) gt
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Proportional derivative (PD) control

Example 20 Jo

Control law (P and PD):

T = Ky (0goal — 0) + Kd%

Dampens oscillations, improves stability

Useful for large inertia & small friction (adds artificial friction)

Derivative term should be %(egoal — (9), use —Ky in this case

Derivative of § can improve stability even when 9g03| changes

Possible problems:

o Derivative is sensitive to measurement noise

e Tends to slow down the control action

o D-term does not contain information about the (constant)
goal state — usually in combination with other control signals
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Combine as PID control (Three mode control)

Black sectors denote negation

eu error

Plant T

0

\

e How do Kj, Ki, Ky interact?
e How to choose K,, Kj, K47

@ PID controllers are used in more than 95% of continuous
feedback control applications (as of 1995)
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Proportional error control: Fast and powerful

Proportional Integral control: Precise and delicate

Proportional Derivative control: Stabilising (unless the system
is rather noisy)

Usually combinations, i.e. PD, Pl or PID, are used
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