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Overview

Modelling an control system
Stationary behaviour and time constant of control systems
Model identification
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Differential Equations

dx(t)

dt
= f (x (t)) subject to x (t0) = x0

Example from last lecture:

dx(t)

dt
= a x (t) subject to x (t0) = x0

Solution
x (t) = x0 exp (a (t − t0))

a > 0 fast increase for x0 > 0
a < 0 decay with time constant τ := −1

a
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Example: Electric motor

Ohm’s law & Kirchhoff’s law

VB = IR + e

Motor generates voltage e = k1s
Vehicle acceleration

ds
dt

=
τ

M

Torque τ is proportional to current:

τ = k2I

Putting together:

VB =
M
k2

R
ds
dt

+ k1s
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Solving differential equations numerically

1 Given process model

VB = k1s +
M
k2

R
ds
dt

Rewrite
ds
dt

= −k1k2

RM
s +

k2

RM
VB

2 Choose a small step size ∆t
3 Start at t = 0 and s(0) = s0
4 Iterate s(t + ∆t) = s(t) + ∆t ds

dt until t = T
5 How do control s(t) towards a desired value by changing VB?
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Abstract form as a control system

C = As + B ds
dt control system plant and controller

A + B d
dt process dynamics operator applied to state

s state variable output: plant → controller
C control variable input: controller → plant

C = As + B
ds
dt

z = As − C =⇒ z = −B
ds
dt

dz
dt

= A
ds
dt

=⇒ z = −B
A

dz
dt

z(t) = z0e−
A
B (t−t0) z=As−C

=⇒ s (t) = s0e−
A
B (t−t0)+

C
A

(
1− e−

A
B (t−t0)

)
Stationary state: C

A ; time scale (decay by a factor of 1
e): τ = B

A
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Back to the Example

VB = k1s +
M
k2

R
ds
dt

C = As + B ds
dt with A = k1, B = M

k2
R , C = VB

Stationary behaviour s (t →∞) = C
A

ds
dt

= 0 =⇒ VB = k1s =⇒ s (t →∞) =
VB

k1

Time scale (decay by a factor of 1
e)

τ =
B
A

=
MR
k1k2
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Half-life of decay

Decay by a factor of 1
2

s (t) = s0e−
k1k2
MR (t−t0) +

VB

k1

(
1− e−

k1k2
MR (t−t0)

)
Starting from previous state s0 = 0 towards new stationary
behaviour at s =VB

k1

s (t) = VB
k1

(
1− e−

k1k2
MR (t−t0)

)

(
1
2

)
VB

k1
=

VB

k1

(
1− e−

k1k2
MR (t−t0)

)
1
2

= e−
k1k2
MR (t−t0)

thalf = − ln
(
1
2

)
MR
k1k2

≈ 0.7
MR
k1k2
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Example

Suppose k1 = 7, MR
k2

= 20,

VB = 7s + 20
ds
dt

If the robot starts at rest and 7V are applied then steady state
speed is

s =
VB

k1
= 1m sec−1

τ 1
2
≈ 0.7

MR
k1k2

= 0.7
20
7

= 2sec

Time taken to cover half the gap between current and steady-state
speed.
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Identification of a control problem

If K = 5, and s∞ = 8, and the system takes 14 seconds to reach
s = 6 starting from s = 0. What is the process equation?

Determine A and B in

Ks∞ = B
ds
dt

+ As

General solution of the
equation:

τ =
B
A

s∞ =
C
A

where C = Ks∞ = 40
Solution of the process equation

(unit scale)

Thus A = C
s∞ = K = 5, B = τA

How do we obtain τ? (Hint τ = 7s, i.e. B = 35)
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Controlling the motor over time

Process model
VB = k1s +

M
k2

R
ds
dt

Stationary behaviour (steady state)

s (t →∞) =
VB

k1

Inverse model:
VB = k1 sgoal

Solution provides forward model:

s (t) = s0e
− MR

k1k2
(t−t0) +

VB

k1

(
1− e−

MR
k1k2

(t−t0)
)
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Summary

In order to derive a process model, we need to understand the
physics of the system
For simple processes, the system can be characterised by
stationary state and the time constant of the approach towards
this state
Given the model equation, a few measurements can help to
derive the explicit model equation and thus to obtain the
trajectory of the system

2015 IVR M. Herrmann


