Activity Graphs: A Model-Independent
Intermediate Layer for Skeletal Coordination

Murray Cole! and Andrea Zavanella?

! Institute for Computing Systems Architecture
University of Edinburgh
mic@dcs.ed.ac.uk
? Dipartimento di Informatica
Universita di Pisa
zavanell@di.unipi.it

Abstract. Activity Graphs are introduced as a simple and practical
means of capturing model independent aspects of the operational se-
mantics of structured (and in particular, skeletal) parallel programs. AGs
provide a notion of parallel activities, dependencies between activities,
and the process groupings within which these take place. They are inde-
pendent of low level details of parallel implementation and so can act as
an intermediate layer for compilation to diverse underlying models. The
paper introduces Activity Graphs and gives a compilation scheme from
a simple skeletal language into them. The compilation process uses a set
of graph generators (templates) to derive the Activity Graph.

1 Introduction

The skeletal approach to parallel programming [4,8,5,2] advocates the use of
program constructors, or “skeletons”, which abstract useful patterns of parallel
computation and interaction. This is held to ease the burden on the program-
mer, who is freed to think in terms of these higher-level strategies while being
absolved of responsibility for their detailed implementation. The methodology
also promises to encourage code re-use and to facilitate portability between ar-
chitectures. While much progress has been made, existing work has a number of
practical weaknesses:

1. Operational semantics of skeletal constructs tend to be presented with a
high degree of informality. This leads to confusion over the precise mean-
ing of nested programs, and also hinders meaningful comparison of skeletal
languages and their relative expressiveness.

2. Compilation schemes tend to to be closely tied to language specific mech-
anisms and models. This is pragmatic, but is in conflict with the goal of
simple portability: as much of the compilation process as possible should be
model independent.

3. Fragments of base level code (i.e. the components which are co-ordinated by
the skeletal layer) are constrained to be sequential. This is convenient from

the implementation perspective, but threatens to severely constrain appli-
cability. Many (perhaps most) real parallel applications contain components
whose structures do not fit the “skeletal straitjacket”.

In this paper we present the “Activity Graph” as an intermediate level con-
cept which addresses these issues. Our aim is to capture as much as can be said
about the operational behaviour of skeletal programs while remaining generic
across underlying models. In particular, we do not embed any assumptions on
either the data or interaction model of the underlying parallel layer.

2 Our Skeleton Language

This section introduces the toy skeleton language L adopted within the paper to
demonstrate the power and the simplicity of our approach. L is very simple in
order to avoid distraction from the Activity Graphs which are the main subject
of the paper. For example, we assume that the number of processors is a power
of two. This is not a fundamental requirement and could be relaxed in a real
language at the expense of a more complex definition. Similarly, we would expect
a full language to incorporate other skeletal control constructs. The small set
chosen here suffices to illustrate principles and to implement our chosen example.

The syntax of L is given in Fig. 1. It allows sequential composition, calls to
base level functions and provides three parallel skeletons. map indicates con-
current, independent execution of the body statement: a group of p processors
executing a map are dispersed into p single processor groups each executing the
body independently. div constructs a binary tree of executions: a group of p
processors executing a div first execute the body collectively as a group, then
independently as two groups of size £, then as four groups of size £, and so on,
finally executing the body as § groups of size 2 (NB not p groups of size 1).
con behaves symmetrically, executing the body on groups of size 2, then 4 and
so on. Constructs can be nested arbitrarily, though notice that calling a con
or a div within a map will have no effect, since the tree oriented constructors
require at least two processors to activate the body). The lowerlayer defines

program ::= statement lowerlayer

statement ::= statement statement |
skeleton { statement } |
basefn

skeleton = div | con | map

Fig. 1. The Language L

data structures and functions in the base language and basefn corresponds to
calls to these functions from L.

The definition of a basefn is provided by the programmer in the base lan-
guage, augmented by two values obtainable at run time through reserved identi-
fiers range (the size of the subgroup of processors executing the basefn) and id
(the identifier of a processor within a subgroup). These can be used to specialise
each processor’s behaviour, in conventional SPMD style. Base functions will be
written to be sequential or parallel to fit the context in which they are called. In
our simple language, functions called within a map will be sequential (because
map indicates a group size of one) while those called within div or con (but
outside map) will be parallel (exploiting the unstructured parallel mechanisms
of the base level).

As an example, we have selected a relatively complex parallel algorithm:
the block-based bitonic mergesort. The algorithm was originally presented in
[1], while the more realistic block-based (many items per processor) variant is
discussed in [6] for example, to which the reader is referred for a discussion and
justification of the algorithm itself. Very briefly, the algorithm is essentially a
mergesort (hence the outer con) in which the mergestep involves some data
re-organisation followed by a division process in which smaller and smaller sub-
sequences are separated out (hence the inner div). The program can be expressed
as a composition of our skeletons, essentially following the analysis made in [3].
The program is presented in Fig. 2. Notice that the semi-colons and parentheses
belong to the base language syntax. Base function quick_sort is the usual
sequential operation, merge_split is an internally parallel merging step and
reverse_half is a parallel data redistribution step required to form bitonic
sequences.

map {quick_sort(a);}
con {

reverse_half (a);

div {merge_split (a);}
}

Fig. 2. Bitonic Mergesort Program

We emphasise that there is no reference in L to data or its distribution. These
matters are handled by the model specific lower layer, in conjunction with the
functions which operate there. Thus, in the example, the meaning of a and the
functions called to act upon it are a property of the base language. The purpose
of the upper layer is to capture parallel algorithmic structure. For example, with
C+MPI as the base language, the statement map {quick_sort(a);} simply
means “run quick_sort (a) ; on each processor in the group”. As is normal with
MPTI’s SPMD style, the conception of the p local arrays a as a single nameless
global array exists only in the programmer’s head. The semantic nature of the
constructs is analogous to that of control constructs in any imperative language,
rather than that of pure higher-order functions.

3 Activity Graphs

Activity Graphs (AGs) express the coordination structure of groups of processors
operating concurrently. They are designed to provide an intermediate layer for
the process of skeletal program compilation, serving as a common, language (and
model) independent target notation for the translation from purely skeletal code,
and as the source notation for the language specific phase of base language code
generation. In the former role they also provide a precise operational semantics
for the skeletal layer, thereby enhancing the programmer’s understanding of the
language, and serving as a useful (and previously lacking) common ground for
the comparison of diverse skeletal languages. The right hand half of figure 8
depicts the AG for our bitonic mergesort example on four processors indicating
abbreviated names for the base language function calls and active processor
ranges in parentheses.

The type of activity graphs is defined in Fig. 3, where program corresponds
to a source program statement.

AG = {V} x {E}

14 1 activity X range
E VXV

range : nat X nat

activity :: AG + program

Fig. 3. Activity Graph definition

Vertices correspond to activities which take place on contiguously indexed
groups of processors. In a flattened AG, all activities will be function calls to
the base level language but during the compilation process they may correspond
to unexpanded skeletal constructs or to other self-contained activity graphs. An
edge between two vertices indicates that there may be a dependency between the
corresponding activities. The resolution of such dependencies falls to the base
language dependent phase of compilation. Notice that no assumption is made on
the underlying implementation model. Different implementation strategies (e.g.
message passing or shared memory) can be instantiated as appropriate.

It is important to stress that while the definition allows arbitrary graph
topology, the graphs which actually emerge from our intended usage will ex-
hibit various regularities following the operational structure of the programming
constructs they represent. Such properties will be exploited in the compilation
phase from activity graph to base level parallelism.

4 Compiling Skeletons to AGs

In this section we explain the methodology for transforming a program written
using our skeleton language into an AG once a range of processors is chosen.
The AGs we obtain when compiling skeletons program are flat.

Definition 1. An activity graph is said to be flat if all the activities at its ver-
tices are base function calls.

The compilation process exploits a set of rules one for each skeleton, named
graph generators. The compilation algorithm takes the initial unexpanded activ-
ity graph ({(program, (0,p—1))},{ }) and recursively expands it by applying
appropriate graph generators to unflattened vertices. Notice that the extension
of the language with a new skeleton only requires the definition of a new graph
generator. Thus, graph generators allow us to express the semantics of new
skeletons in terms of “coordinations”, in contrast to more abstract functional
notations which do not fix such meta-implementation details.

In the remainder of the paper we will use the abstract syntactic object seq
to indicate statement sequencing.

4.1 Graph Generators

A graph generator is a graph template which can be specialised with a given
program and range in order to produce an AG:

Gskel :: program X range — AG (1)
The Graph Generator for sequential composition is described by Eq. 2.
Gsket(seq(p1,p2),range) = ({vi,v2}, {(v1,v2)}) (2)

where:
v1 = (Ggker (p1,Tange), range)
vo = (Gsker (p2, range), range)

Note that we do not attempt to introduce pipeline parallelism. Such a fa-
cility would require examination of cost information which is orthogonal to our
purpose here. Such issues are considered in [7].

The conquer [3] paradigm is introduced in our language using the con skele-
ton. The generator of con is given by Eq. 3. Notice that the we define the leaves
of the tree to be two-processor groups (rather than single processors). This fol-
lows naturally from the observation that in real situations, when the quantity
of data far out strips the number of processors, it is common to use different

e el [w
S S R S

P][P P [P um]

j j I

[PO)

(8) (b)

Fig. 4. A graphical representation of con (a) and div (b) graph generators

algorithms for the sequential “reduce within a processor” phase and the par-
allel tree reduction phase. Our div construct behaves analogously. Given that
|range| = 2¢:

Gskel(con(p)a mnge) = (V7 E) (3)

where:

V = {vij,rij}
1<i<t,0<j<2 -1

vij =p, 1ij = (Lu)

1=342, u=1+(2"-1)

E = {(vij, va+yg/n) | 1< i <t -1}

The con skeleton is defined as construct to merge subgroups of activities
using a standard binary tree. The div skeleton automatically generates the tree
of a binary divide. The generator for div is the Eq. 4.

Gskel (d?:’l)(p), range) = (Va E) (4)

where:

V = {vij,rij}t
1<i<t,0<j<271_-1

vij =p, 1ij = (l,u)

[= j2t—i+17 w=1+ (2t—i+1 -1

E = {(vi-1)(j/2),vi3) | 2<i < t}

The AGs for some graph generators are shown in Fig. 4.
Finally, the map skeleton models independent parallel replication. Its gen-
erator is given in Eq. 5.

Gskel (map(p),range) = (V7 {}) (5)

V = {(p,G,)) | 0 < i < [range| — 1)}

4.2 The Algorithm

The algorithm to compile a skeleton program into a flat AG starts from a trivial
AG given by: AGy = ({(program, (0,p—1))},{}) and recursively expands the
nodes of the graph which contain program subtrees. When all nodes are basefn
the compilation stops. A high level description of the algorithm is given in Fig. 5.
We use skel to stand for any skeletal construct.

ag=AG0=(V,E)

While notflat(ag) do
select v in V such that v=(skel(prog),r)
ag’=Gskel (skel(prog) ,r)

replace(ag,v,ag’) /* node expansion */

Forall e in E such that e=(v,x) /* replace outgoing edges */
delete(ag,e)
newedges=connected (sinks (ag’) ,sources(x))
add (ag,newedges)

endfor

Forall e in E such that e=(x,v) /* replace incoming edges */
delete(ag,e)
newedges=connected (sinks (x) ,sources(ag’))
add (ag,newedges)

endfor

endwhile

Fig. 5. The compilation algorithm

The functions notflat, sources, sinks and connected are defined in Eq. 6- 9.

not flat(V, E) = 3(p,r) € V : p = skel(prog) (6)

connected(A, B) = {(u,v)} :u € A,v € B, (7
range(u) Nrange(v) # 0

sinks(V,E)={v eV :VY(z,y) € E : z # v} (8)

sources(V,E) ={v eV :V(z,y) € E :y # v} (9)

The auxiliary functions delete, add and replace implement the intuitive opera-
tions on the graph of removing edges, adding edges and replacing a vertex with
a subgraph (with the subsequent operations handle the connection of the new
sub-graph to the whole).

5 Compiling Bitonic Mergesort

The compilation process may be better understood through our running exam-
ple. Figure 6 shows the abstract syntax tree for the bitonic mergesort.

seq
/\
map con
| |
quicksort seq
7N
reverse_half div

|

mergesplit

Fig. 6. The syntax tree of Bitonic Mergesort

Let us consider the four steps of the compiling process assuming that p = 4
and r = (0,3). The operations on the edges are shown in Fig. 7 (expansion of
seq and then map and con) and Fig. 8 (expansion of seq and div).

stepl :
v = seq{progl, prog2}
progl = map{quicksort(a)}
prog2 = con{seq{reverse_hal f (a), div{merge_split(a)}}}
replace(ag, v, G e (seq(progl, prog2), (0,3)))

step2 :
v = map{quicksort(a)})
prog = quicksort(a)
replace(ag, v, Gsrer(map(prog,r)))
v = con{seq{reverse_hal f (a), div{merge_split(a)}}}
prog = seq{reverse_hal f(a), div{merge_split(a)}}
replace(ag, v, Gser(con(prog,r)))

(@©@) [eam] ([e@) [a @)

map(quicksort) (0,3) k \17 \9 %7 \9 J

%7 fseq(prog) (0,1) seq(prog) (2,3)\
con(prog) (0,3) [seq(prog) (0,3))

Fig. 7. Compilation of Bitonic: expansion of seq then map and con

stepd :
v = seq{progl,prog2}
progl = reverse_hal f(a)
prog2 = div{merge_split(a)}
replace(ag, v, Gske (seq(progl, prog2),r)))

step4 :
v = div{prog}
prog = merge_split(a)
replace(ag, v, Gsker (div(prog)))

6 Conclusions and Future Work

We have defined the concept of “Activity Graphs” and have demonstrated their
utility in the field of parallel program coordination, particularly in the skeletal
style. We believe that activity graphs offer a precise formalism for the expres-
sion of the operational semantics of parallel program structures in a way which
has previously been lacking, operating at a level which captures details of the
structure of coordination, but independent of the model specific means by which
that coordination may be implemented. We hope that this work will serve as a
unifying foundation upon which we and others will build in the future.

There are many possible avenues for future development. Firstly, We have
already made a preliminary study of the back-end process of compiling AGs
to concrete low-level code, using MPI as a target. Space constraints preclude
discussion of this work here but it will proceed. An obvious extension is to
target further implementation layers, for example OpenMP, BSP or similar.
Secondly, the skeletal language L described served as a demonstrator only. It will
be most interesting to extend our approach to fuller, realistic languages. Finally,
we have deliberately avoided issues of cost modelling and optimisation in this
presentation, since we believe them to be orthogonal to our primary semantic

? w @ Q@ % % a@| [e®
[r_ha" (0,1)J [,._ha" (2,3)J [r_half\% (0,1)J [r_half\% (2,3)J
% % [m_sp (0,1)J [m_sp (2,3) J

iv{m_sp) (0,1)] Eiv(m_sp) (2,3)] v v

m e
r_ilf (Oii)] \9

T
i ! \9

[div(m_sp) (0,3)] [m_sp (0,1) J [m_sp (2,3) J

Fig. 8. Compilation of Bitonic: expansion of seq then div

purpose. However, we are aware that the structural information captured by our
activity graphs should be useful in this respect.

References

1. K. Batcher. Sorting networks and their applications. In Proc. AFIPS Spring Joint
Computer Conference, pages 307-314, 1968.

2. George H. Botorog and Herbert Kuchen. Efficient parallel programming with algo-
rithmic skeletons. In L. Bouge, P. Fraigniaud, A. Mignotte, and Y. Robert, editors,
Proceedings of EuroPar ’96, volume 1123 of LNCS, pages 718-731. Springer, 1996.

3. M. Cole. On Dividing and Conquering Independently. In Lecture Notes in Computer
Science 1300, pages 634—637, 1997.

4. M.I. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
Pitman, 1989.

5. J. Darlington, Y. Guo, H'W. To, and J. Yang. Parallel Skeletons for Structured
Composition. In Proceedings of ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 19-28. ACM Press, 1995.

6. V. Kumar et al. Introduction to Parallel Computing. Benjamin Cummings, 1994.

7. H'W.To. Optimising the Parallel Behaviour of Combinations of Program Compo-
nents. Ph.d. thesis, Imperial College, 1995.

8. S. Pelagatti and M. Danelutto. Structured Development of Parallel Programs. Taylor
& Francis, 1997.

